胎牛血清(FBS)Sigma Aldrich F74524 Hoechst 33258 Sigma Aldrich 861405人类细胞因子阵列R&D Systems ary005b L-谷氨酰胺Sigma Sigma aldrich aldrich aldrich aldrich g7513 lio bio-techne I bio-techne i bio-techne 3401020202020202020202 1x 1x 1x 1x 1x 1x 1x 1x 1x1x 1x 1x 1x 1x 1x 1x 1x。 Noggin Bio-Techne 3344-NG-050 Normal horse serum (NHS) Vector Laboratories S-2000 Normal goat serum (NGS) Dako X0907 Neurobasal medium ThermoFisher Scientific A1371201 Paraformaldehyde (PFA) ThermoFisher Scientific P/0840/53 Phosphate buffered saline Sigma Aldrich P4417-100TAB Poly-li-Ernithine Merck P3655-10MG SB431542 Miltenyi Biotech 130-106-275 SHH-C24II BIO-TECHNE BRIO-TECHNE 1845-SH-SH-025 SH-025 ALGINATE(Provona Slm 100)
平台,我们首先利用 Cas-CLOVER 开发了一种敲除谷氨酰胺合成酶 (GS) 基因的新型悬浮 CHO K1 细胞系。广泛使用的 GS 敲除策略允许在用于 GS 拯救的相同质粒构建体上引入目的基因时对其进行扩增。大约 35% 的 GS 敲除候选细胞的两个等位基因都被 Cas-CLOVER 灭活。在建立稳定的 GS 敲除 CHO 细胞系后,我们开始针对利妥昔单抗 2(一种研究充分的 IgG1)进行抗体生产,作为测试案例。使用 piggyBac® 转座酶系统稳定整合了编码具有 GS 标记的利妥昔单抗重链和轻链的构建体。Solentim VIPS
摘要:癌症是继心血管疾病之后全球第二大死亡原因。分子和生物化学技术的发展扩大了人们对癌细胞特定代谢途径变化的认识。有氧糖酵解增加、补充反应促进,尤其是细胞对谷氨酰胺和脂肪酸代谢的依赖已成为研究课题。尽管有许多癌症治疗策略,但由于癌细胞对目前使用的治疗方法产生了耐药性,许多肿瘤患者无法完全治愈。现在,开发高效且副作用少的新治疗策略已成为当务之急。在这篇综述中,我们介绍了目前对糖酵解、克雷布斯循环和戊糖磷酸途径不同步骤中涉及的酶的了解,以及可能的靶向疗法。这篇综述还重点介绍了癌细胞和正常细胞在代谢表型方面的差异。对癌细胞代谢的认识在不断发展,需要进一步研究以开发新的抗癌治疗策略。
摘要:癌症是继心血管疾病之后全球第二大死亡原因。分子和生物化学技术的发展扩大了人们对癌细胞特定代谢途径变化的认识。有氧糖酵解增加、补充反应促进,尤其是细胞对谷氨酰胺和脂肪酸代谢的依赖已成为研究课题。尽管有许多癌症治疗策略,但由于癌细胞对目前使用的治疗方法产生了耐药性,许多肿瘤患者无法完全治愈。现在,开发高效且副作用少的新治疗策略已成为当务之急。在这篇综述中,我们介绍了目前对糖酵解、克雷布斯循环和戊糖磷酸途径不同步骤中涉及的酶的了解,以及可能的靶向疗法。这篇综述还重点介绍了癌细胞和正常细胞在代谢表型方面的差异。对癌细胞代谢的认识在不断发展,需要进一步研究以开发新的抗癌治疗策略。
hc =健康对照; OC =口腔癌; OSCC =口腔鳞状细胞癌; OSMF =口服粘膜纤维化; op = oropharynx; HNSCC =头颈鳞状细胞癌; PML =预先病变; 8-OHDG = 8-羟基氧鸟苷; kif1a =运动蛋白家庭成员1a; EDNRB =内皮素受体B型; timp3 =金属蛋白酶3的组织抑制剂3; pCQAP = PC2谷氨酰胺/Q-富蛋白; PCR =聚合酶链反应; DAPK1 =与死亡相关的蛋白激酶1; OSMF =口服粘膜纤维化; RT-QMSP =实时定量甲基化特异性PCR;磷酸src =磷酸化src; TC =舌头癌; MSP =甲基化特异性PCR; maspin =乳腺丝氨酸蛋白酶抑制剂陷阱=端粒酶重复放大方案; mgmt =甲基鸟氨酸-DNA-甲基转移酶; raASF1A =含含域的含有域的蛋白; Med15 =介体复合体亚基15
目前,肿瘤治疗主要包括手术、放疗、化疗、免疫治疗和分子靶向治疗,其中放疗是主要支柱之一,但放射抗性的发生很大程度上限制了其治疗效果。代谢重编程是肿瘤进展和治疗抗性的重要标志,在放疗中,DNA断裂是造成细胞损伤的主要机制,而癌细胞容易增加葡萄糖、谷氨酰胺、丝氨酸、精氨酸、脂肪酸等代谢通量,为DNA损伤修复提供充足的底物和能量。因此,研究代谢重编程与肿瘤放射抗性的联系可能为提高肿瘤治疗效果提供新思路。本综述主要关注葡萄糖、氨基酸、脂质、核苷酸等离子代谢等代谢改变在放射抗性中的作用,并提出可能的治疗靶点,以改善肿瘤放疗的疗效。
C. Condusum C. Coyleae C. Diphtheria C. falsenii C. Flavescens C. Freiburgense C. Freneyi C. Genitalium C. Glucuronolotilticmicum C.谷氨酰胺C. Hansenii C. Hansenii C. Imitans C. imitans C. jeikeium C. kroppenstiiii c. kroppenstedtiii c. c. lipoplien c. lipoplienc Uchotii C. Minute C. mucifaciens C. Mycetoides C. Pilbarense C. Pseudodiphthericum C. Pseudogenital C. Pseudogenital C. PseudogenieniTris C. pyruviciproducens C. Resistant C. Riegelii C. segmentosum C. Simulating C. singular C. station C. striped C. Suicordis C. Sundsvallense C. tuzsenii C. Timonense C. Tuscaniense C.溃疡C.尿素C.尿素尿素C.变量C. viterumeruminis C.疾病 div>
昆虫是了解宿主-病原体相互作用和先天免疫机制的既定模型。昆虫的先天免疫系统在识别和抵抗感染期间造成有害影响的病原体方面非常有效。覆盖昆虫身体表层的角质层通过诱导先天免疫反应参与宿主防御和伤口愈合。先前的研究已经开始探讨角质层基因在赋予对昆虫病原体的抗性方面的作用,特别是那些通过破坏昆虫角质层进行感染的病原体。例如,果蝇的角质层基因转谷氨酰胺酶 (TG) 在角质层形成和血液凝固中起结构性作用,还具有抗病原体感染的免疫特性。然而,关于昆虫其他角质层基因家族的免疫功能的信息越来越多。在这篇综述中,我们旨在强调昆虫角质层免疫的最新进展,并讨论进一步研究的必要性,以填补这一重要昆虫免疫学领域的现有空白。这些信息将带来有效管理农业害虫以及植物和人类疾病媒介的新策略。
摘要:癌细胞发生代谢重编程,包括葡萄糖代谢、脂肪酸合成和谷氨酰胺代谢率增加。这三种主要代谢途径的增强与糖酵解密切相关,糖酵解被认为是癌细胞代谢的核心组成部分。越来越多的证据表明,功能失调的糖酵解通常与癌症治疗中的耐药性有关,异常的糖酵解在耐药癌细胞中起着重要作用。针对这些异常的药物开发研究已导致肿瘤治疗效果的提高。本综述讨论了导致癌细胞耐药的糖酵解靶点的变化,包括己糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合物、葡萄糖转运蛋白和乳酸,以及潜在的分子机制和相应的新治疗策略。此外,还介绍了氧化磷酸化增加与耐药性之间的关联,这是由代谢可塑性引起的。鉴于异常糖酵解已被确定为耐药肿瘤细胞的共同代谢特征,针对糖酵解可能是开发新药以造福耐药患者的新策略。
重组腺相关的病毒载体(AAVS)广泛用于研究和治疗中的基因递送。AAV9变体(例如AAV9-PHP.EB)经常用于基因递送到中枢神经系统(CNS),而AAV2变体对CNS有效转导的有效报告有限。为了克服AAV2的局限性,我们解决了基于AAV2血清型的新型脑靶向AAV矢量。迄今为止,我们已经证明了通过使用随机肽插入的AAV2库来获得的cereaav.o,可以通过全身注射有效地转导小鼠,而摩尔莫斯特脑有效地转导。此外,与CereAav.o相比,通过单个氨基酸取代,我们已经确定了一种新型的Cereaav.y突变体,其特异性和更高的转导效率。最近,Kawabata等人。已经证明,在AAV-BR1衣壳中,将单个氨基酸取代,将谷氨酰胺变为587(Q587N)的天冬酰胺,可能会增加BBB的渗透率,并重定向基因递送形成小囊囊内皮细胞对小鼠脑中神经元的囊泡内皮细胞。