在高等植物中,GABA 主要通过一条称为 GABA 分流的短途径代谢,谷氨酸脱羧酶(GAD)催化谷氨酸不可逆脱羧生成 GABA 5,6。GAD 具有一个额外的 C 末端残基,称为钙调蛋白(CaM)结合结构域(CaMBD)。体外研究表明,低 pH 或 Ca 2+ /CaM 与 CaMBD 结合可刺激 GAD 活性 7,8,9。此外,转基因研究表明,去除 CaMBD 会导致植物中 GABA 积累更高 10,11,12,13。因此,人们认为在没有 Ca 2+ /CaM 的情况下,CaMBD 充当负调节/自抑制结构域,并且通过 Ca 2+ /CaM 与 CaMBD 结合可解除负调节。因此,我们的目标是通过 CRISPR(成簇的规律间隔的短回文重复序列)/Cas9 去除 CaMBD
治疗负面症状和精神分裂症的认知功能障碍仍然是世界各地精神科医生正在试图解决的问题。它们的机制可能与N-甲基-D-天冬氨酸受体(NMDAR)有关。基于NMDAR拮抗剂和抗NMDAR脑炎病理学的临床作用,将精神分裂症的NMDAR功能低下假设提出。针对大脑NMDAR功能的药物在改善精神分裂症患者的负面症状和认知功能障碍方面似乎有望。在这篇综述中,我们列出了针对NMDAR的药物,并报告相关临床研究。然后,我们根据动物模型中揭示的改善的谷氨酸假说,总结了它们对负面症状和认知功能障碍的影响,并根据改善的谷氨酸假说分析了这些临床研究的不令人满意的结果。我们旨在为基于NMDAR功能低下假设的精神分裂症的负面症状和认知功能障碍寻求治疗策略的科学家提供观点。
神经代谢物的体内无创成像对于提高我们对神经退行性疾病中潜在的病理生理机制的理解至关重要。突触组织的异常变化导致突触降解和神经元丧失是推动阿尔茨海默氏病病理学的主要因素之一。基于磁共振成分的分子成像技术,例如化学交换饱和转移(CEST)和磁共振光谱(MRS)可以提供可能与潜在的病理和补偿机制有关的神经代谢物特异性信息。在这项研究中,进行了CEST和短回波时间单素MRS,以评估脑代谢物对β-淀粉样蛋白(Aβ)诱导的突触不足在阿尔茨海默氏病小鼠模型的河马中诱导的突触不足。在9.4 Tesla小动物MR成像系统上获取了基于CEST的光谱(Z-Spectra),该系统具有两个辐射式(RF)静止幅度(1.47μt和5.9μt),以分别获得肌酸和谷氨酸 - 与谷氨酸的cest对比。多池Lorentzian拟合和定量T1纵向松弛图用于获得代谢特定的明显交换依赖性弛豫(AREX)图。获得短回声时间(TE = 12 ms)单素MRS,以量化右海马区域的多个神经代谢物。AREX对比和基于MRS的代谢产物浓度水平,其野生型(WT)同窝型同伴(年龄= 10个月)。在相同的ROI中,GLU-AREX和CR-AREX表现出与GLU/TCR比的正相关。使用MRS Voxel作为感兴趣的区域,与WT动物相比,ARTE10中GLU-AREX和CR-AREX的群体分析显着降低。与WT动物相比,ARTE10小鼠中基于MRS的结果显示谷氨酸(GLU)和谷氨酸 - total-total cretine(GLU/TCR)的比例显着降低。与WT动物相比,ARTE10中ARTE10中的总肌酸(TCR),磷酸甲酸(PCR)和谷胱甘肽(GSH)浓度水平的总数也显着增加。这些结果表明神经递质代谢物的参与和β介导的突触中的能量代谢
现在普遍认为星形胶质细胞是突触传递的活跃参与者,因此中枢神经系统中整合信号通讯的神经中心观点正在转向神经星形中心观点。星形胶质细胞对突触活动作出反应,释放化学信号(神经胶质递质)并表达神经递质受体(G 蛋白偶联受体和离子型受体),因此在中枢神经系统中充当神经元信号通讯的共同参与者。G 蛋白偶联受体通过异源化进行物理相互作用,形成具有新的独特信号识别和转导途径的异源体和受体嵌合体,这种能力在神经元质膜上得到了深入研究,并改变了中枢神经系统中整合信号通讯的观点。纹状体神经元质膜上的腺苷 A2A 和多巴胺 D2 受体是通过异源化进行受体间相互作用的最著名例子之一,对生理学和药理学观点都有相关影响。这里我们回顾了天然 A2A 和 D2 受体也可以通过星形胶质细胞质膜上的异源聚合相互作用的证据。发现星形胶质细胞 A2A-D2 异源聚合体能够控制纹状体星形胶质细胞突起释放谷氨酸。本文讨论了纹状体星形胶质细胞和星形胶质细胞突起上的 A2A-D2 异源聚合体在控制纹状体谷氨酸能传递方面的潜在相关性,包括在精神分裂症或帕金森病等病理条件下谷氨酸能传递失调的潜在作用。
摘要 下丘脑的 kisspeptin (Kiss1) 神经元对青春期发育和生殖至关重要。弓状核 Kiss1 (Kiss1 ARH) 神经元负责促性腺激素释放激素 (GnRH) 的脉冲式释放。在女性中,表达 Kiss1、神经激肽 B (NKB) 和强啡肽 (Dyn) 的 Kiss1 ARH 神经元的行为在整个卵巢周期中都会发生变化。研究表明,17 β -雌二醇 (E2) 会降低这些神经元中的肽表达,但会增加 Slc17a6 (Vglut2) mRNA 和谷氨酸神经传递,这表明从肽能信号传导转变为谷氨酸能信号传导。为了研究这种转变,我们结合了转录组学、电生理学和数学建模。我们的结果表明,E2 治疗上调了电压激活钙通道的 mRNA 表达,提高了有助于高频爆发放电的全细胞钙电流。此外,E2 治疗降低了典型瞬时受体电位 (TPRC) 5 和 G 蛋白偶联 K + (GIRK) 通道的 mRNA 水平。当使用 CRISPR/SaCas9 删除 Kiss1 ARH 神经元中的 Trpc5 通道时,缓慢的兴奋性突触后电位被消除。我们的数据使我们能够制定一个生物物理上真实的 Kiss1 ARH 神经元数学模型,表明 E2 改变了这些神经元中的离子电导,从而实现了从高频同步放电(通过 NKB 驱动的 TRPC5 通道激活)到促进谷氨酸释放的短爆发模式的转变。在低 E2 环境中,Kiss1 ARH 的同步放电
3。LindströmK,Lindblad F,Hjerna。早产和注意力缺陷/多动障碍。儿科。2011; 127:858-865。4。ertürkE,işıkü,sirin fb。ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。 J Atten Disord。 2023; 28:58-65。 5。 Swanson JM,Kinsbourne M,Nigg JT等。 注意缺陷/多动症脑成像,分子遗传和环境因素以及多巴胺假说的病因学亚型。 Neuropsychol Rev. 2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用ADHD中血清VEGF,IGF-1和HIF-1α水平的分析。J Atten Disord。2023; 28:58-65。5。Swanson JM,Kinsbourne M,Nigg JT等。病因学亚型。Neuropsychol Rev.2007; 17:39-59。 6。 Halperin JM,BédardAV,Curchack-Lichtin J. ADHD的预防性干预措施神经发育的观点。 神经疗法。 2012; 9:531-541。 7。 Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。 自闭症和注意力缺陷/多动症障碍中生长因子的改变。 前部精神病学。 2017; 8:126。 8。 Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用2007; 17:39-59。6。Halperin JM,BédardAV,Curchack-Lichtin J.ADHD的预防性干预措施神经发育的观点。神经疗法。2012; 9:531-541。7。Galvez-Contreras A,Campos-OrdoñezT,González-CastañedaR等。自闭症和注意力缺陷/多动症障碍中生长因子的改变。前部精神病学。2017; 8:126。8。Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。 Pharmacol Biochem行为。 2011; 99:211-216。 9。 Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。 JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用Arnsten AF,Pliszka Sr。儿茶酚胺对与注意力缺陷/多动障碍和相关疾病的治疗相关的前额叶皮质功能的影响。Pharmacol Biochem行为。2011; 99:211-216。9。Wilens TE,Faraone SV,Biederman J.成人的注意力缺陷/多动症。JAMA。 2004; 292:619。 10。 Huang X,Wang M,Zhang Q等。 谷氨酸的作用JAMA。2004; 292:619。10。Huang X,Wang M,Zhang Q等。 谷氨酸的作用Huang X,Wang M,Zhang Q等。谷氨酸的作用
1。Moghissi E.老年患者的2型糖尿病的管理:当前和新兴的治疗选择。糖尿病。2013; 4(2):239-256。 2。 美国糖尿病协会专业实践委员会,Draznin B,Aroda VR等。 13。 老年人:糖尿病中的医疗标准-2022。 糖尿病护理。 2022; 45(补充1):S195- S207。 3。 Bramlage P,Gitt AK,Binz C,Krekler M,Deeg E,TschöpeD。老年2型糖尿病中的口服抗糖尿病治疗:平衡对葡萄糖控制的需求和高血糖症的风险。 心脏疾病。 2012; 11:122。 4。 Izzo A,Massimino E,Riccardi G,Della Pepa G.对2型糖尿病中的肌肉减少症的叙述性评论:患病率和相关的方面。 营养。 2021; 13(1):183。 5。 NovodvorskýP,HaluzíkM。关于2型糖尿病中胰岛素GLP-1受体激动剂组合的安全性的最新消息。 Expert Opin Drug Saf。 2022; 21(3):349-361。 6。 Rosenstock J,Aronson R,Grunberger G等。 Lixilan的好处是胰岛素glargine Plus Lixise- Natide,与胰岛素glargine和Lixisenatide Monocomponents的可滴定固定比率组合,在口服不足的2型糖尿病中:Lixilan-O随机试验。 糖尿病护理。 2016; 39(11):2026-2035。 7。 Aroda VR,Rosenstock J,Wysham C等。 糖尿病护理。 2016; 39(11):1972-1980。2013; 4(2):239-256。2。美国糖尿病协会专业实践委员会,Draznin B,Aroda VR等。13。老年人:糖尿病中的医疗标准-2022。糖尿病护理。2022; 45(补充1):S195- S207。3。Bramlage P,Gitt AK,Binz C,Krekler M,Deeg E,TschöpeD。老年2型糖尿病中的口服抗糖尿病治疗:平衡对葡萄糖控制的需求和高血糖症的风险。心脏疾病。2012; 11:122。 4。 Izzo A,Massimino E,Riccardi G,Della Pepa G.对2型糖尿病中的肌肉减少症的叙述性评论:患病率和相关的方面。 营养。 2021; 13(1):183。 5。 NovodvorskýP,HaluzíkM。关于2型糖尿病中胰岛素GLP-1受体激动剂组合的安全性的最新消息。 Expert Opin Drug Saf。 2022; 21(3):349-361。 6。 Rosenstock J,Aronson R,Grunberger G等。 Lixilan的好处是胰岛素glargine Plus Lixise- Natide,与胰岛素glargine和Lixisenatide Monocomponents的可滴定固定比率组合,在口服不足的2型糖尿病中:Lixilan-O随机试验。 糖尿病护理。 2016; 39(11):2026-2035。 7。 Aroda VR,Rosenstock J,Wysham C等。 糖尿病护理。 2016; 39(11):1972-1980。2012; 11:122。4。Izzo A,Massimino E,Riccardi G,Della Pepa G.对2型糖尿病中的肌肉减少症的叙述性评论:患病率和相关的方面。营养。2021; 13(1):183。5。NovodvorskýP,HaluzíkM。关于2型糖尿病中胰岛素GLP-1受体激动剂组合的安全性的最新消息。Expert Opin Drug Saf。2022; 21(3):349-361。6。Rosenstock J,Aronson R,Grunberger G等。Lixilan的好处是胰岛素glargine Plus Lixise- Natide,与胰岛素glargine和Lixisenatide Monocomponents的可滴定固定比率组合,在口服不足的2型糖尿病中:Lixilan-O随机试验。糖尿病护理。2016; 39(11):2026-2035。7。Aroda VR,Rosenstock J,Wysham C等。糖尿病护理。2016; 39(11):1972-1980。lixinal的功效和安全性,这是一种可滴定的固定比率组合,在2型糖尿病中,胰岛素和litxise- natide在基础胰岛素和二甲双胍中受到不足的控制:lixilan-l随机试验。
代谢型谷氨酸受体2(MGLU 2)吸引了特别的关注,这是对新型抗精神病药的可能目标。然而,转导MGLU 2在大脑中的作用的信号通路仍然很差。在这里,我们通过识别鼠标前额叶皮层中的本机MGLU 2 Interactome来解决此问题。基于纳米的亲和力纯化和质谱法确定了149个候选MGLU 2个伴侣,包括神经营养蛋白受体TRKB。在培养的细胞和前额叶皮层中证实了后来的相互作用。MGLU 2激活触发TRKB在原发性皮质神经元和前额叶皮层中Tyr 816上的磷酸化。相互,TRKB刺激增强了MGLU 2稳定的G I/O蛋白激活。此外,TRKB抑制可防止戊二酰化抗精神病药在经苯基二酮治疗的小鼠中挽救行为缺陷。共同揭示了TRKB和MGLU 2之间的串扰,这是对谷氨酸能抗精神病药的行为反应的关键。
Troriluzole:用于治疗甲基苯丙胺和阿片类药物使用障碍的双重谷氨酸释放抑制剂/转运激活剂 Scott Rawls,博士 – 神经科学系教授;天普大学刘易斯卡茨医学院药物滥用研究中心生物医学教育与数据科学系
PBLG 360 PEG 8 20 – 36% 67 MA 180 – 323 PEG 1 – 42 88 – 97 % 39 PLL 150 – 2200 PEG 22 – 113 48% 68 PLLGA 9 PEG 11 – 114 96 – 99% 38 PCEVE 845 PS 60 77% 35 a abbreviations for polymer backbones and side-chains: MA (methacrylate); nb(诺本烯); ONBA(氧苯甲烯酸酐); NBA(Norbornene赤道); p n ba poly(n-丙烯酸丁酯); pdmaema(聚(2-(二甲基氨基)甲基丙烯酸乙酯); PMMA(聚(甲基丙烯酸甲基甲基甲基甲基))); PLA(聚(乳酸)); PS(聚苯乙烯); P T Ba(p t ba(p t ba(t丁基丙烯酸酯)异氰酸酯); PBLG(聚(聚γ-苯甲酰-L-谷氨酸)); PEG(聚乙二醇)); PLL(Poly(L-赖氨酸)); PLLGA(γ-Poly(-propargy-l-谷氨酸)); PCEVE(聚(氯乙基乙烯基醚))