生存分析是癌症,心血管疾病和传染病等各种领域的公共卫生和临床研究的基石(Altman&Bland,1998; Bradburn等,2003)。传统的参数和半参数统计方法,例如COX比例危害模型,通常用于生存分析(Cox,1972)。但是,这些方法有几个局限性,尤其是应用于复杂数据时。一个主要问题是需要限制性假设,例如比例危害和预定义的功能形式,在复杂的,现实世界中的医疗保健数据中可能不正确(Harrell,2015; Ishwaran等,2008)。此外,这些方法通常在高维数据集上遇到困难,从而导致过度拟合,多重共线性以及处理复杂的相互作用的问题(Ishwaran等,2008; Joffe等,2013)。
描述模型整合了环境 DNA (eDNA) 检测数据和传统调查数据,以联合估计物种捕获率(参见包插图:< https://ednajoint.netlify.app/ >)。模型可以与通过传统调查方法(即诱捕、电捕鱼、目测)获得的计数数据以及通过聚合酶链反应(即 PCR 或 qPCR)从多个调查地点复制的 eDNA 检测/未检测数据一起使用。估计参数包括假阳性 eDNA 检测的概率、相对于传统调查缩放 eDNA 调查灵敏度的站点级协变量以及传统渔具类型的捕获系数。模型使用“Stan”概率编程语言通过贝叶斯框架(马尔可夫链蒙特卡罗)实现。
T细胞受体(TCR)及其同源表位之间结合的准确预测是理解适应性免疫反应和发展免疫疗法的关键。当前方法面临两个显着的局限性:全面的高质量数据的短缺以及通过选择监督学习方法中常用的负面培训数据引起的偏见。我们提出了一种基于变压器的方法,用于相互作用的肽和T细胞受体(Tulip)的方法,该模型通过利用不完整的数据和无监督的学习以及使用语言模型的变压器体系结构来解决这两个限制。我们的模型具有灵活性,并整合了所有可能的数据源,无论其质量或完整性如何。我们证明了先前有监督方法中使用的抽样程序引入的偏差的存在,强调了不受监督的方法的需求。郁金香识别表位的特定TCR结合,在看不见的表位上表现良好。我们的模型优于最先进的模型,并为开发更准确的TCR表位识别模型提供了有希望的方向。
ilke aydogan:i.aydogan@ieseg.fraurélienbaillon:baillon@em-lyon.com emmanuel kemel:emmanuel.kemel@gemel@greg-hec.com chen li:c.li@ese@ese.eur.nl,我们感谢Peter Wakker和Han Bleichrodt和Han Bleichrodt的帮助和讨论。Baillon承认NWO Vidi Grant 452-13-013的财务支持。Aydogan承认该地区Haut-De-France(2021.00865 Clam)和欧盟的Horizon Horizon Europe Research and Innovation计划,根据Grant协议(101056891具有能力)。li感谢NWO Veni Grant VI.Veni.191E.024的财务支持。1 See, for instance, Phillips and Edwards ( 1966 ), Edwards ( 1968 ), Tversky and Kahneman ( 1974 ), El-Gamal and Grether ( 1995 ), Oswald and Grosjean ( 2004 ), Möbius, Niederle, Niehaus, and Rosenblat ( 2022 ), Bén- abou and Tirole ( 2016 ), Ambuehl and Li ( 2018 ).
apca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 ASCA。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 ASCA_FIT 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 ASCA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 ASCA_FIT。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 ASCA_PLOTS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 ASCA_RESULTS。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9块。data.frame。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10热。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 11蜡烛。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12个dummyCode。 。 。 。 。 。 。 。 。 。 。 。 。 。10热。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11蜡烛。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个dummyCode。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 Extended.Model.Frame。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 limmpca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 Model.Frame.asca。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 MSCA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 PCANOVA 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17个pcanova_plots。 。 。16 PCANOVA。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个pcanova_plots。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>19 pcananova_ sensults。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20个永久性。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21中心。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22时图。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 UPDATE_WITHOUT_FACTOR。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24
MCMC.QPCRCCR软件包。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 amp.ff。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 4 Beckham.Data。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>2 amp.ff。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 Beckham.Data。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>4 Beckham.Data。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 Beckham.ff。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 5珊瑚色。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 CQ2Counts。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>4 Beckham.ff。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5珊瑚色。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 CQ2Counts。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 CQ2GEMENT。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 CQ2LOG。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 9诊断。mcmc。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8 CQ2LOG。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9诊断。mcmc。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11稀释。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 12 div>11稀释。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 div>
引入了一个新的贝叶斯建模框架,用于分段均匀变量 - 内存马尔可夫链,以及一系列有效的算法工具,用于更改点检测和离散时间序列的分割。建立在最近引入的贝叶斯上下文树(BCT)框架上,离散时间序列中不同片段的分布描述为可变内存马尔可夫链。对变化点的存在和位置的推断。促进有效抽样的关键观察者是,可以精确地计算数据的每个段中的先前预测可能性(在所有模型和参数上平均)。这使得可以直接从变更点的数量和位置的后验分布中进行采样,从而导致准确的估计,并提供结果中不确定性的自然定量度量。也可以以其他额外的计算成本来获得每个细分市场中实际模型的估计。对模拟和现实世界数据的结果表明,所提出的方法是强大的,并且表现效果也不如先进的技术。
使用MCMC算法的贝叶斯系统发育分析产生了以系统发育树和相关参数样本形式的系统发育树的poserior分布。树空间的高维度和非欧几里得性质使总结树空间中后验分布的核心趋势和方差复杂。在这里,我们介绍了一个可从树的后部样本构建的可构造的新的树木分布和相关的点估计器。通过模拟研究,我们表明,这一点估计器的性能也至少要比产生贝叶斯后摘要树的标准方法更好。我们还表明,执行最佳的摘要方法取决于样本量和以非平凡的方式的尺寸 - 问题。
DALLIAE项目旨在提出一种基于因果(贝叶斯)图[4,5]的通用方法,以检测光束线实验期间的异常及其可解释性。在因果图中,我们将特别关注定向的无环图(DAG)[1]。目标是引入层次因果图,并利用替代因果模型的概念来识别最相关的简单(单参数)和关节(Pa-Rameter组合)因果关系,这些因果链接表征了异常原因的原因。这种方法是必不可少的,这是由于仪器的多尺度性质和完整的梁线,这需要对不同尺度上的因果关系有细微的理解。我们还将专注于量化与已确定的因果链接相关的不确定性,以确保其相关性。由于各种工具,参数[1,3],在实验[2]中的修改,关节效应的组合数量以及数据中异常代表性不足,因此对因果关系的搜索更加困难。在实践中,此方法将限制主要X射线或激光器仪器的操作异常的影响,以了解光束特性与光束线光学元件的物理参数之间的联系。可以随着时间的推移观察到突然的或慢的异常/变化,例如聚焦畸变直接影响测量的质量和速度。尽管AI文献中有许多异常检测方法,但它们通常基于相关性,这在传达因果关系方面无效。因此,理解和征询这些故障的原因以及与最佳测量链性能的偏差对于快速响应和梁线或激光器操作的最大可靠性至关重要。因此,该项目的目的是根据因果图提出可解释的AI,以支持光束线操作员和科学家。任务是开发基于因果关系的模型来确定涉及异常的传感器参数。该方法将补充在合适的时间范围内进行纠正措施的诊断工具。因此,可以将工作分为以下任务:
fi g u r e 2研究中观察到的范围偏移概述。(a)研究中存在的原始存在和不存在数据以及存在估计值的后中值。原始观测图上的红点/正方形显示原始物种的检测,而黑点/正方形显示非探测。点代表ebird数据记录,正方形代表Bird Atlas Records。模型估计图中的颜色梯度图显示了该模型估计的存在的可能性,其中更多的黄色表示存在的概率更高。深蓝色和深紫色概述了与示例物种相对应的范围变化的数量。深蓝色:Kori Bustard(Ardeotis kori);深紫色:von der Decken的Hornbill(Tockus deckeni)。(b)在1980 - 1999年和2000- 2020年之间,单个物种范围移动的相对变化因子分为总范围变化,有意义的收缩分数和有意义的扩张得分。y轴上的值以线性尺度表示。1的相对变化因子对应于收缩或扩张(损失或获得等于机会区域的区域)的无意义变化,而总范围变化没有变化(1980- 1999年的范围等于2000 - 2020年的范围)。一个相对变化因子为2,对应于面积的两倍,而面积减半的系数为0.5。