本研究旨在利用“肺癌预测”数据集,分析三种分类模型(决策树分类器、支持向量机和朴素贝叶斯分类器)在预测肺癌方面的表现。所采用的性能评估指标包括准确率、精确率加权、召回率加权和 F1 加权。作为初步步骤,进行了探索性数据分析 (EDA) 和数据集预处理,包括特征选择、数据清理和数据转换。测试数据结果显示,决策树分类器和朴素贝叶斯分类器具有相似的性能,准确率、精确率、召回率和 F1 值都很高。同时,支持向量机也表现出了竞争力,尽管其精确率加权值略低。此外,使用箱线图进行了异常值分析,结果显示决策树分类器有 2 个异常值,而支持向量机有 4 个异常值,朴素贝叶斯没有异常值。总而言之,这三种分类模型在肺癌预测中都表现出良好的潜力。然而,选择最佳模型需要考虑应用的相关评估指标,并考虑到每个模型的局限性。需要进一步评估和深入分析,以确保模型在更准确和一致地预测肺癌病例方面的可靠性。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
▶在一项重要的工作中,Del Negro和Schorfheide(2009)提出了DSGE-VAR程序,该程序将结构性宏观经济模型(DSGE模型)的先前信息纳入了VAR模型
神经联想记忆是具有快速突触学习的单层感知器,通常存储神经活动模式对之间的离散关联。先前的研究分析了在独立模式成分和异质关联的朴素贝叶斯假设下的最佳网络,其任务是从输入到输出模式学习关联。在这里,我研究了用于自动关联的最优贝叶斯联想网络,其中输入层和输出层相同。特别是,我将性能与近似贝叶斯学习规则的不同变体(如 BCPNN(贝叶斯置信传播神经网络))进行比较,并尝试解释为什么有时次优学习规则比(理论上)最优模型实现更高的存储容量。事实证明,性能可能取决于违反“朴素贝叶斯”假设的输入成分的微妙依赖关系。这包括具有恒定数量的活动单元的模式、通过循环网络重复传播模式的迭代检索以及最可能单元的赢家通吃激活。如果所有学习规则都包含一种新的自适应机制来估计迭代检索步骤 (ANE) 中的噪声,则其性能可以显著提高。具有 ANE 的贝叶斯学习规则再次实现了整体最大存储容量。
已经知道了几个相关年龄相关的过程。例如,许多系外行星可能在恒星辐射的影响下可能遭受近乎完全的大气损失(Fulton等人。2017,van Eylen等。 2018),无论是在其生命的头亿年(例如Owen&Wu 2013)还是在数十亿年(Gupta&Schlichting 2019)。 即使气氛幸存下来,它们的性质也会随着数十亿年的时间表的冷却而变化(Lopez&Fortney 2014)。 同时,系外行星的岩心是由Fe,Mg和Si等元素制成的。 随着星系的发展,这些元素的相对丰度发生了变化,最近显示出恒星的丰度和小行星的密度是连接的(Adibekekyan等人。 2021),观察到岩石行星组成与恒星年龄之间的直接联系(Weeks等人 2024)。2017,van Eylen等。2018),无论是在其生命的头亿年(例如Owen&Wu 2013)还是在数十亿年(Gupta&Schlichting 2019)。即使气氛幸存下来,它们的性质也会随着数十亿年的时间表的冷却而变化(Lopez&Fortney 2014)。同时,系外行星的岩心是由Fe,Mg和Si等元素制成的。随着星系的发展,这些元素的相对丰度发生了变化,最近显示出恒星的丰度和小行星的密度是连接的(Adibekekyan等人。2021),观察到岩石行星组成与恒星年龄之间的直接联系(Weeks等人2024)。
2009-20 年,在贝叶斯感知、风险分析和人类环境中机器人导航决策方面的新发现的推动下。这些新发现促使我们完成了几项研发行动(在科学成果、软件和专利方面),并开辟了新的研究方向和新的合作伙伴关系(包括法国国家研发机构 CEA),朝着未来智能移动机器人和自动驾驶汽车所需的软件/硬件集成迈出了决定性的一步。1 我在 2002 年 3 月由欧盟研发计划“未来新兴技术”在布鲁塞尔组织的“头脑风暴日”上介绍了这一新研究议程的第一个大纲(这次头脑风暴研讨会的主要目的是准备一份新的欧盟提案征集,题为“超越机器人”)。然后,我制定了一个 10 年的研究议程,通过结合几何、概率和人工智能方法,逐步解决已确定的关键理论和技术机器人问题。 2 IRT:法国技术研究院 - SVA 计划:长期“自动驾驶汽车安全”计划。 3 Inria 项目团队“e-Motion”于 2004 年成立,最初的想法经过了一年的孵化期。该研究团队由 Inria Grenoble Rhône-Alpes 和格勒诺布尔-阿尔卑斯大学 (UGA) 的 LIG 实验室共同组成。在 2004-14 年期间,e-Motion 项目团队收到了多个国际评估小组的出色反馈:2009 年 3 月的 Inria 机器人评估研讨会、2010 年 2 月的法国 AERES 对 LIG 实验室的评估(e-Motion 项目团队得分为 A+)以及 2013 年 3 月的 Inria 机器人评估研讨会。
贝叶斯创业始于这样一个前提:企业家的信念指导着他们的理论、实验和选择(Agrawal 等人,第 nd 页)。由于每个企业家都有基于自己过去经验、认知能力和性格的独特信念,因此即使偶然发现相同的创业机会,个体企业家也可能采取不同的行动。除了最初的信念之外,贝叶斯创业还植根于这样的理念:实验可以成为更新信念和改善选择的宝贵工具。从贝叶斯的角度来看,任何有目的的信息收集活动,用于测试新企业或新战略的前景——从寻求建议到 A/B 测试——都可以被视为贝叶斯实验(Kerr、Nanda 和 Rhodes-Kropf 2014;Agrawal 等人,第 nd 页)。
该文章的此版本已被接受以供出版,在同行评审(适用)之后(如果适用),并且受Springer Nature的AM使用条款的约束,但不是记录的版本,并且不反映后接受后的改进或任何更正。记录版本可在线获得:https://doi.org/10.1038/s41564-024-01656-3
高维和异质计数数据在各种应用领域收集。在本文中,我们仔细研究了有关微生物组的高分辨率测序数据,这些数据使研究人员能够研究整个微生物群落的基因组。揭示这些社区之间的潜在互动对于学习微生物如何影响人类健康至关重要。为了从类似的多元计数数据中进行结构学习,我们开发了一个具有两个关键元素的新型高斯副图形模型。首先,我们采用参数回归来表征边际分布。此步骤对于适应外部协变量的影响至关重要。忽略这种调整可能会在推断基础依赖网络的推断中引起扭曲。其次,我们基于适合高维度的计算效率搜索算法的贝叶斯结构学习框架。该方法返回边缘效应和依赖性结构的同时推断,包括图不确定性估计。一项模拟研究和微生物组数据的真实数据分析突出了所提出的方法在从多元计数数据中推断网络的适用性,尤其是与微生物组分析的相关性。提出的方法是在R软件包BDGraph中实现的。关键字:Copula图形模型,离散的Weibull,链接预测,结构学习,微生物组