在这次演讲中,我将讨论我们最近将贝叶斯ML工具整合到实验实验室工作流程中的一些努力。通过用专家知识增强ML以改善决策来解决数据限制。使用合成化学和共轭有机材料发现的示例,该讨论将强调ML支持基于实验室决策的机会和挑战。
度量贝叶斯+UCB SimAgg RegAgg 模拟时间(小时) 47.45 78.14 78.13 预计收敛分数 0.7264 0.7273 0.7227 DICE 标签 0 0.9977 0.9978 0.9980 DICE 标签 1 0.6844 0.6657 0.6561 DICE 标签 2 0.7257 0.6430 0.6665 DICE 标签 4 0.7464 0.7603 0.7313
我们解决了图表中节点子集上定义的功能优化的问题。鉴于其组合,黑盒和昂贵的评估性质,这种功能的优化通常是一项非平凡的任务。尽管文献中已经引入了各种算法,但大多数是特定于任务或计算效率低下的算法,并且仅利用图形结构的信息而不考虑函数的特征。为了解决这些限制,我们利用贝叶斯优化(BO),一种样品有效的黑盒求解器,并提出了一个新颖的框架,以在图形上进行组合优化。更具体地说,我们将原始图中的每个k节点子集映射到新组合图中的节点,并采用局部建模方法,通过使用递归算法逐步采样其子图,以有效地穿越后者。合成和现实世界中的广泛实验证明了拟议的BO框架在各种类型的图形和优化任务上的有效性,其中通过消融研究详细分析了其行为。可以在github.com/leonresearch/graphcombo上找到实验代码。
18 世纪,托马斯·贝叶斯 (Thomas Bayes) 提出了一个激进的想法:用概率来表示我们认为假设正确的程度 (Bayes, 1763/1958)。他在一场赌博游戏中这样做:在经历了一定数量的输赢之后,你赢的概率有多大?使用概率论根据数据更新我们的信念程度的想法是我们现在所说的贝叶斯规则的基础(见图 1)。贝叶斯可能认为他的工作具有较低的概率,而这一模型在 200 多年后成为贝叶斯认知模型的基础,该模型从理性信念更新的角度解释人类行为(例如,Griffiths 等人,2010 年)。贝叶斯认知模型解释了归纳推理——从有限的数据得出不确定结论的过程,例如根据在对话中听到的新词推断其含义。在贝叶斯模型中,这种推断是将数据(例如,你听到新词的上下文)与我们对世界的现有期望(例如,对一个词可能具有何种含义的期望)相结合的结果。这些期望以假设的“先验分布”来表达,更合理的假设具有更高的先验概率。这捕捉到了学习者的“归纳偏差”——那些影响学习者选择的假设的数据以外的因素(Mitchell,1997)。先验分布可以定义为
本文提出了一种使用先进技术(例如贝叶斯优化(BO),遗传算法(GA)和加固学习(RL)等先进技术来优化军事行动的综合方法。该研究重点关注三个关键领域:防御行动中的单位处置,消防支持计划和下属单位的任务计划。对于单位处置,BO用于优化基于战场指标的营的位置,汤普森采样采集功能和周期内核可实现卓越的结果。在消防支持计划中,GA用于最大程度地减少威胁水平和发射时间,以有限的资源下解决资源受限的项目调度问题(RCPSP)。最后,开发了用于任务计划的RL模型,结合了多代理增强学习(MARL),图形注意网络(GAT)和分层增强学习(HRL)。RL模型通过模拟战场场景来展示其在产生战术操作方面的有效性。这种方法使军事决策者能够增强复杂环境中运营的适应性和效率。结果强调了这些优化技术支持军事指挥和控制系统在实现战术优势方面的潜力。
1 新疆大学可再生能源发电与并网教育部工程研究中心,乌鲁木齐 830049,新疆,中华人民共和国。2 新疆电力有限公司电力科学研究院,乌鲁木齐 830049,新疆,中华人民共和国。通讯作者:吴嘉辉 (wjh229@xju.edu.cn)。摘要:随着储能电站领域的蓬勃发展,电池系统状态和故障的预测受到广泛关注。电压作为各类电池故障的主要指示参数,准确预测电压异常对确保电池系统的安全运行至关重要。本研究采用基于 Informer 的预测方法,利用贝叶斯优化算法对神经网络模型的超参数进行微调,从而提高储能电池电压异常预测的准确性。该方法以1分钟为采样间隔,采用一步预测,训练集占总数据的70%,将预测结果的均方根误差、均方误差和平均绝对误差分别降低至9.18mV、0.0831mV和6.708mV。还分析了实际电网运行数据在不同采样间隔和数据训练集比例下对预测结果的影响,从而得到一个兼顾效率和准确性的数据集。所提出的基于贝叶斯优化的方法可以实现更准确的电压异常预测。
•选择要生成的数据集•从先前的𝑝(𝜃 𝜃)中•从可能性𝑝(𝑦𝑦(𝑗)中示例̃𝑦(𝜃𝑗)•示例•示例𝑆draws traks traks(𝜃,𝑠,𝑠,𝑠,𝑠) 𝕀[𝑓(𝜃(𝑗,𝑠))<𝑓(𝜃(𝑗))]•如果一切都正确,则等级的分布将均匀分布
航空业在全球运输中起着至关重要的作用,促进经济增长和革命性旅行。但是,航班延误已经成为一个日益严重的关注点,影响了航空公司和乘客。本研究旨在研究用于飞行延迟预测的幼稚贝叶斯算法。目的是使用幼稚的贝叶斯算法开发可靠的飞行延迟预测模型并评估其性能。使用美国运输部(DOT)的飞行延迟和取消数据的数据集用于预测。本研究修改了高斯幼稚贝叶斯的参数调整,以识别专门为该飞行延迟数据集构建模型的最佳值。参数调整高斯幼稚的贝叶斯模型的性能与另外两种众所周知的算法是K-Neartiment Neighbors(KNN)和支持向量机(SVM)。还对KNN和SVM算法进行了培训和测试,以完成航班延迟的二元分类,以实现基准测试。通过比较准确性,特异性和ROC AUC分数的值来实现算法的评估。比较分析表明,高斯幼稚的贝叶斯的表现最佳,精度为93%,而KNN的性能最差,而ROC AUC得分为63%。
摘要。我们描述了一个贝叶斯控制器的贝叶斯控制器,这是控制理论中众所周知的基准。卡车孔系统的特征是其非线性和不足的性质,我们通过(1)假设控制器缺乏传感器噪声方差的知识,并且(2)在控制信号上施加界限。传统的控制算法通常难以适应不确定性和约束。然而,贝叶斯框架,尤其是专用推理框架,可以顺利地适应这些复杂性。在拟议的控制器中,整个计算过程由在线贝叶斯推理组成。通过工具箱简化了此过程,以在因子图中快速传递基于消息传递的推断。我们描述了在因子图中传递消息的机制,解决了诸如非线性因素,有限控制和实时参数跟踪之类的挑战。本文的主要目的是证明,随着主动推理框架的发展和自动推理工具箱的效率,贝叶斯控制成为应用程序工程师的吸引人选择。
1一个示例是分类,其中得分函数通常是每个候选标签的SoftMax得分(r = 1)。它是积极的定向:较大意味着模型更确定候选标签是真实的标签。对于回归,更常见的是使用负面的分数函数,这意味着等式中的不平等。(1)被逆转。2这个扩展的摘要着重于边缘CP。更一般地,CP算法可以预测R t(X t,α)。