摘要 - 神经网络(NNS)已经证明了它们在从计算机视觉到自然语言处理的各个领域中的潜力。在各种NN中,二维(2D)和三维(3D)卷积神经网络(CNN)在广泛的应用中已被广泛采用,例如图像分类和视频识别,因为它们在提取2D和3D特征方面具有出色的功能。但是,标准的2D和3D CNN无法捕获其模型不确定性,这对于包括医疗保健和自动驾驶在内的许多关键安全应用至关重要。相比之下,作为CNN的一种变体,贝叶斯卷积神经网络(贝叶斯)(贝叶斯)已经证明了它们通过数学基础在预测中表达不确定性的能力。尽管如此,由于采样和随后的前向通过多次通过了整个网络,因此贝内斯科的计算要求并未在工业实践中广泛使用。结果,与标准CNN相比,这些过程显着增加了计算和内存消耗量。本文提出了一种新型的基于FPGA的硬件体系结构,以加速通过Monte Carlo辍学推断的2D和3D贝内斯科。与其他最先进的加速器相比,贝内斯科的设计可以达到高达高达能量效率的4倍,而计算效率的9倍。考虑部分贝叶斯推断,提出了一个自动框架,以探索硬件和算法性能之间的权衡。进行了大量实验,以证明我们提出的框架可以有效地发现设计空间中的最佳点。
由于复制越来越多的研究的复制,生物科学中的典型统计实践已被越来越受到质疑,其中许多研究被无效假设测试设计和P值解释的相对难度所困扰。贝叶斯推论代表了一种根本不同的假设检验方法,由于其易于解释和对先前假设的明确声明,因此获得了新的兴趣作为潜在的替代或对传统无效假设检验的补充。贝叶斯模型在数学上比等效频繁的方法更为复杂,这些方法历来将应用程序限制在简化的分析案例中。但是,随着计算能力的指数增加,概率分布采样工具的出现现在可以在任何数据分布下快速而强大的推断。在这里,我们介绍了在大鼠电生理和计算建模数据中使用贝叶斯推断在神经科学研究中使用贝叶斯推断的实用教程。我们首先是对贝叶斯规则和推理的直观讨论,然后使用来自各种神经科学研究的数据制定基于贝叶斯的回归和ANOVA模型。我们展示了贝叶斯推论如何导致对数据的易于解释分析,同时提供开源工具箱来促进贝叶斯工具的使用。
神经生物学中当前的观点量介绍了一群不同的研究者的最新思想,位于可塑性和记忆力研究的最前沿。这些评论的共同主题是行为。也就是说,每个人都使用最新工具检查了不同空间分析的可塑性和记忆的特定方面,但在行为的背景下进行了。除了探索大脑变化与由此产生的行为之间的关系外,行为对受试者的实验还允许检查大脑区域之间的相互作用以及情境和行为状态在可塑性中的作用。在行为动物中的工作还有助于促进模型之间的翻译,包括斑马鱼,果蝇,啮齿动物和人类的可塑性研究。
神经联想记忆是具有快速突触学习的单层感知器,通常存储神经活动模式对之间的离散关联。先前的研究分析了在独立模式成分和异质关联的朴素贝叶斯假设下的最佳网络,其任务是从输入到输出模式学习关联。在这里,我研究了用于自动关联的最优贝叶斯联想网络,其中输入层和输出层相同。特别是,我将性能与近似贝叶斯学习规则的不同变体(如 BCPNN(贝叶斯置信传播神经网络))进行比较,并尝试解释为什么有时次优学习规则比(理论上)最优模型实现更高的存储容量。事实证明,性能可能取决于违反“朴素贝叶斯”假设的输入成分的微妙依赖关系。这包括具有恒定数量的活动单元的模式、通过循环网络重复传播模式的迭代检索以及最可能单元的赢家通吃激活。如果所有学习规则都包含一种新的自适应机制来估计迭代检索步骤 (ANE) 中的噪声,则其性能可以显著提高。具有 ANE 的贝叶斯学习规则再次实现了整体最大存储容量。
人类比计算机更善于收集各种信息,并将它们关联成连贯的图像,但错误率仍然很高。例如,情报分析员可以将道路的图像和视频与观察员报告的车队在下午早些时候经过的报告相关联,并得出结论,这是参与该道路 10 英里外恐怖袭击的同一支车队。这些结论基于对卡车和汽车在每种媒体(视频、图像、人类报告)中的表现方式以及汽车、道路、车队等之间的时间和空间关系的隐性理解。计算机程序要从同一组来源执行相同的推理,它必须拥有相同类型的知识。将这些知识传达给计算机程序需要一种方法来使人类的隐性知识明确和正式化,以便在需要时可以检索和使用。
摘要:近年来,人们对量子机器学习的兴趣日益高涨,研究人员积极开发利用量子技术的力量解决各个领域高度复杂问题的方法。然而,由于量子资源有限和固有噪声,在有噪声的中间量子设备 (NISQ) 上实现基于门的量子算法面临着显著的挑战。在本文中,我们提出了一种在量子电路上表示贝叶斯网络的创新方法,专门用于应对这些挑战。我们的目标是最大限度地减少在量子计算机上实现量子贝叶斯网络 (QBN) 所需的量子资源。通过精心设计动态电路中的量子门序列,我们可以优化有限量子资源的利用率,同时减轻噪声的影响。此外,我们提出了一项实验研究,证明了我们提出的方法的有效性和效率。通过在 NISQ 设备上进行模拟和实验,我们表明我们的动态电路表示显著降低了资源需求并增强了 QBN 实现的稳健性。这些发现凸显了我们的方法的潜力,为量子贝叶斯网络在当前可用的量子硬件上的实际应用铺平了道路。
我们的社会世界是一个不断变化的环境,其中人类同胞产生无数的言语和非言语信号。 为了确保生存,我们必须从周围的复杂性中感知某些规律。 无法应对这一日常挑战可能会让一些人付出惨重代价;社交接触会引发多种精神症状,而社交退缩会至少暂时降低这些症状的强度。 2 例如,混乱(或形式思维障碍)是精神分裂症的主要特征之一,主要表现为社交背景下合作交流的中断。 虽然现在许多技术进步使我们能够在实验室中研究“社交”互动因子(例如,参见 Kingsbury 及其同事 3 ),但很少在社交接触的神经机制背景下研究精神症状。 为了应对这一挑战,我们需要实证工具来从两个人的视角开始研究社交互动的动态神经框架。在本篇社论中,我们首先介绍了这样一种工具:一种新兴的“主动推理”视角,用于两个人之间的合作沟通。然后,我们介绍了精神分裂症中形式思维障碍的双脑问题,作为其实用性的典型案例,并将由此产生的理论预期映射到该结构的已知迹象上。最后,我们重点介绍了在主动推理框架中对形式思维障碍进行投射而产生的几个实验机会。
说明使用现代加密技术将R对象加密到原始向量或文件。基于密码的密钥推导与“ argon2”()。对象被序列化,然后使用“ XCHACHA20- poly1305”进行加密(),遵循RFC 8439的rfc 8439,用于认证的加密( and>)加密函数由随附的“单核”'C'库提供()。
摘要。我们提出了一种脑萎缩模型,这是高维遗传信息的函数和低维的协变量,例如性别,年龄,APOE基因和疾病状态。提出了一个非参数单索引贝叶斯的高维模型,以在未知函数上使用B型序列序列对关系进行建模,并在随机效应的分布之前,在未知的函数和dirichlet过程尺度混合物上进行了焦中的尺度混合物。在没有随机效应的情况下,收缩的后率是针对固定数量的区域和时间点的,随着样本量的增加。我们通过哈密顿蒙特卡洛(HMC)算法实现了有效的计算算法。将提出的贝叶斯方法的性能与线性模型中相应的最小平方估计器进行了比较,并在高维协变量对高维协变量上的Mosseshoe先验,最小绝对收缩和选择算子(Lasso)(LASSO)(LASSO)(LASSO)和平滑剪辑的绝对偏差(SCAD)进行了惩罚。提出的贝叶斯方法适用于在748个个体的多次访问中使用620,901个SNP和其他6个其他协变量对每个人进行多次访问的大脑区域的数据集,以识别与脑萎缩相关的因素。