1 简介高效的配电网是当今现代社会的重要组成部分。因此,电网不仅要可靠,还必须具有弹性。因此,对此类系统进行建模以减轻可能发生的故障和停电是一个重要的研究领域 [1]。弹性规划始于可靠性分析。正式地,我们将系统的可靠性定义为该系统在固定条件和指定时间段内运行或执行某种功能的概率。在本研究中,我们将变电站视为配电网的最重要组成部分之一,并且我们知道这些网络中的单元元件故障组合可能导致严重的负载损失。因此,计算最可能的故障模式或涉及较少单个元件的故障模式有助于规划预防性维护 [2]。使用老化模型结合来自元件本身传感器的数据,我们可以计算出配电网中给定元件发生故障的概率。在本研究中,我们根据变电站各个部件(变压器、母线、开关、线路以及保护系统本身)的联合故障概率来计算变电站继续运行的概率。为了处理这种类型的条件概率,我们使用了此类研究中常用的贝叶斯网络模型 [3]。这些模型的困难之处在于它们的高计算复杂度。随着问题规模的增加(在贝叶斯网络的情况下,这以建模问题所需的节点和弧的数量来衡量),经典算法解决这些贝叶斯网络模型所需的时间和计算内存呈指数增长,直到它们的分辨率变得不可行的点 [4]。在这方面,值得注意的是,基于门的量子计算机有望帮助解决量子化学 [5] [6] [7]、机器学习 [8] [9]、金融模拟 [10] [11] [12] [13] 和组合优化应用 [14] [15] 中的问题。正如 Preskill [16] 所预测的那样,具有超过 100 个量子比特的噪声中型量子 (NISQ) 计算机现在已成为现实,并且可能能够执行超越当今经典数字计算机能力的任务,但量子门中的噪声限制了可以可靠执行的量子电路的大小。为了获得这项技术的所有优势,我们将需要更精确的量子门,并最终实现完全容错的量子计算。在本文中,我们评估了这项技术是否也能够帮助进行弹性和故障风险分析。在这一点上,我们可以强调这项工作的主要贡献:• 我们定义了一种新的受限量子贝叶斯网络 (RQBN) 程序,用于对复杂系统的可靠性进行建模。 • 我们评估了该程序执行可靠性分析的可行性,通过调整单个量子电路执行中的镜头数,获得与经典蒙特卡罗方法相同的精度。 • 我们测试了真实量子计算机噪声对模型中元素的影响。 本文提出了一种用于电力配电系统中故障概率传播的量子建模的一般应用程序,以及一种用于计算该模型的程序。 贝叶斯网络以贝叶斯网络为例对几个电力配电系统(特别是典型的变电站和保护系统)进行了建模。 使用经典算法和量子算法计算变电站的故障模式。 我们使用 pomegranate(一个能够实现概率模型的 Python 库)以经典方式解决贝叶斯网络 [17]。 然后,我们考虑使用 Qiskit [18] 在量子领域对贝叶斯网络进行建模和求解,
在许多值得关注的科学应用中,量子算法有可能比传统算法快得多。例如量子机器学习 [1]、量子化学 [2] 以及许多其他 [3]。不幸的是,其中许多应用还无法在当前的嘈杂中型量子 (NISQ) 计算机上实现 [4],需要等到噪声源可以被抑制到阈值,使量子计算机可用于实践,甚至构建容错量子计算机 [5]。然而,许多有趣的 LGT 问题已经可以通过 NISQ 设备进行研究 [6]。特别是,如果以哈密顿量公式研究 LGT,量子算法通常不会受到符号问题的影响 [7,8]。一种重要的现成算法是变分量子特征值求解器 (VQE) [ 9 ],它是一种混合量子经典算法,利用变分原理寻找给定汉密尔顿量 H 的基态(和激发态)。VQE 的量子部分用于测量给定多量子比特状态中汉密尔顿量的期望值,即能量,而经典部分则在由参数化量子电路生成的多量子比特状态族中搜索使能量最小化的状态。本文提出的算法是一种经典优化器,旨在找到基态的良好近似值,尽可能减少能量测量的次数。这里选择的方法称为贝叶斯全局优化。它的首次应用可以追溯到 20 世纪 60 年代 [ 10 ],而它的现代实现则基于最近的研究 [ 11 ]。该方法的基础是高斯过程回归 (GPR),这是一种基于高斯过程贝叶斯推理的插值方法。它使我们能够使用有限量的 (嘈杂) 数据创建黑盒函数的预测模型。在每次优化迭代中,该模型用于确定一组可能接近全局最小点的参数。此步骤按照称为获取函数优化的过程执行。这里提出的优化能量的算法不同于 VQE 中常用的其他替代方法,因为它不仅使用能量的估计值,还使用其统计误差的值。其动机是降低每一步的量子测量次数:即使对于不精确的能量测量,只要它们的误差由于中心极限定理近似为高斯,该过程也是定义良好的。使用噪声设备模拟器将该算法的结果与其他常用的替代方案进行了比较。
摘要 视网膜图像不足以确定“外面”是什么,因为许多不同的现实世界几何形状都可以产生任何给定的视网膜图像。因此,视觉系统必须根据感官数据和先验知识(无论是天生的还是通过与环境的交互学习的)推断出最有可能的外部原因。我们将描述我们和其他人用来探索皮质间反馈在视觉系统中的作用的“分层贝叶斯推理”的一般框架,我们将进一步论证这种“观察”方法使我们的视觉系统容易以各种不同的方式出现感知错误。在这个故意挑衅和有偏见的观点中,我们认为神经调节剂多巴胺可能是执行贝叶斯推理的神经回路与精神分裂症患者的感知特质之间的关键联系。© 2021 S. Karger AG,巴塞尔
2实际上,1919年的日食结果并不是有时描绘的那么简单的确定性。尽管在爱丁顿探险方面收集的数据与一般相对论的理论一致,但来自另一个团队使用的望远镜之一的数据似乎挑战了它。但是,由于技术人工制品,后一个数据集被排除在分析之外。这一决定将导致后来针对爱丁顿11的偏见 - 据说他是“一般相对论的热情支持者”(第37页; 12; 12) - 尽管最近对数据的重新分析证明了原始研究的结论13。除了以后的争议外,还值得注意的是,探险报告的出版
生存分析是癌症,心血管疾病和传染病等各种领域的公共卫生和临床研究的基石(Altman&Bland,1998; Bradburn等,2003)。传统的参数和半参数统计方法,例如COX比例危害模型,通常用于生存分析(Cox,1972)。但是,这些方法有几个局限性,尤其是应用于复杂数据时。一个主要问题是需要限制性假设,例如比例危害和预定义的功能形式,在复杂的,现实世界中的医疗保健数据中可能不正确(Harrell,2015; Ishwaran等,2008)。此外,这些方法通常在高维数据集上遇到困难,从而导致过度拟合,多重共线性以及处理复杂的相互作用的问题(Ishwaran等,2008; Joffe等,2013)。
在早期剂量发现试验中,最佳剂量组合的鉴定,由于精确估算了估算许多参数之间的权衡,以相当估算可观的非单调剂量反应表面所需的许多参数,以及在早期试验中的小样本量。 在个性化剂量发现的背景下,这种困难更为相关,在这种情况下,耐心特征用于识别量身定制的最佳剂量组合。 为了克服这些挑战,我们提出使用贝叶斯优化来确定标准(“全部尺寸拟合”)和个性化的多代理剂量验证试验的最佳剂量组合。 贝叶斯优化是一种估计昂贵评估目标函数的全球最佳功能的方法。 客观函数通过替代模型(通常是高斯过程)与连续设计策略配对,可以通过采集函数选择下一点。 这项工作是由行业赞助的问题激发的,在该问题中的重点是在最小的毒性中优化双重药物疗法。 为了比较在此设置下的标准和个性化方法的性能,对各种情况进行了模拟研究。 我们的研究得出结论,在存在异质性的情况下,采用个性化方法是非常有益的。鉴定,由于精确估算了估算许多参数之间的权衡,以相当估算可观的非单调剂量反应表面所需的许多参数,以及在早期试验中的小样本量。在个性化剂量发现的背景下,这种困难更为相关,在这种情况下,耐心特征用于识别量身定制的最佳剂量组合。为了克服这些挑战,我们提出使用贝叶斯优化来确定标准(“全部尺寸拟合”)和个性化的多代理剂量验证试验的最佳剂量组合。贝叶斯优化是一种估计昂贵评估目标函数的全球最佳功能的方法。客观函数通过替代模型(通常是高斯过程)与连续设计策略配对,可以通过采集函数选择下一点。这项工作是由行业赞助的问题激发的,在该问题中的重点是在最小的毒性中优化双重药物疗法。为了比较在此设置下的标准和个性化方法的性能,对各种情况进行了模拟研究。我们的研究得出结论,在存在异质性的情况下,采用个性化方法是非常有益的。
©2021。此手稿版本可在CC-BY-NC-ND 4.0许可下提供https://creativecommons.org/licenses/by-nc-nc-nd/4.0/
我们提出了一种基于模型的终身强化学习方法,该方法估计分层贝叶斯后验,提炼出不同任务之间共享的共同结构。学习到的后验与基于样本的贝叶斯探索程序相结合,提高了跨一系列相关任务学习的样本效率。我们首先分析了有限 MDP 设置中样本复杂度和后验初始化质量之间的关系。接下来,我们通过引入变分贝叶斯终身强化学习算法将该方法扩展到连续状态域,该算法可以与最近的基于模型的深度 RL 方法相结合,并表现出后向迁移。在几个具有挑战性的领域的实验结果表明,我们的算法比最先进的终身 RL 方法实现了更好的前向和后向迁移性能。1
糖尿病是一种持久的代谢疾病,这是由于血糖水平升高而导致的,这是由于体内胰岛素的不良产生或对体内胰岛素的无效利用而产生的。印度通常被标记为“世界糖尿病之都”,这是由于这种情况的广泛流行。根据国际糖尿病联合会报道,在2021年9月最新的作者最新知识最新的最新知识更新,据报道,印度约有7700万成年人受到糖尿病的影响。由于隐藏的早期症状,许多糖尿病患者无法诊断,导致治疗延迟。虽然已经利用计算智能方法来提高预测率,但这些方法的显着部分缺乏可解释性,这主要是由于它们固有的黑匣子性质。规则提取经常用于阐明机器学习算法固有的不透明性质。此外,为了解决黑匣子性质,使用了一种基于加权贝叶斯关联规则挖掘的强大规则的方法,以便提取的诊断糖尿病等疾病的提取规则可以非常透明,并且可以由临床专家易于分析,从而增强可解释性。使用UCI机器学习存储库来构建WBBN模型,证明了95.8%的性能精度。