1.Rajkomar A、Oren E、Chen K 等人。利用电子健康记录进行可扩展且准确的深度学习。npj 数字医学。2018;1(1):1 – 10。https://doi.org/10.1038/s41746-018-0029-1。2.Paydar S、Pourahmad S、Azad M 等人。利用人工神经网络建立甲状腺结节恶性风险预测模型。《中东癌症杂志》。2016;7(1):47-52。3.Amato F、López A、Peña-Méndez EM、Va ň hara P、Hampl A、Havel J.医学诊断中的人工神经网络。J Appl Biomed。2013; 11(2):47-58。 https://doi.org/10.2478/v10136-012-0031-x。4.莫赫塔尔 AM.未来医院:业务架构视图。马来医学科学杂志。2017;24(5):1-6。 https://doi.org/10.21315/mjms2017.24.5.1。5.Liu X、Faes L、Kale AU 等人。深度学习与医疗保健专业人员在医学影像检测疾病方面的表现比较:系统评价和荟萃分析。柳叶刀数字健康。2019;1(6):e271-e297。https://doi.org/10.1016/s2589-7500 (19)30123-2。6.Nagendran M、Chen Y、Lovejoy CA 等人。人工智能与临床医生:深度学习研究的设计、报告标准和主张的系统回顾。英国医学杂志。2020;368:m689。https://doi.org/10.1136/bmj.m689。7.Panch T、Pearson-Stuttard J、Greaves F、Atun R. 人工智能:公共健康的机遇和风险。柳叶刀数字健康。2019;1 (1):e13-e14。https://doi.org/10.1016/s2589-7500(19)30002-0。8.Landes J、Osimani B、Poellinger R. 药理学中的因果推理的认识论。欧洲哲学杂志。2018;8(1):3-49。 https://doi.org/10。1007/s13194-017-0169-1。9.Abdin AY、Auker-Howlett D、Landes J、Mulla G、Jacob J、Osimani B.审查机械证据评估者 E-synthesis 和 EBM +:阿莫西林和药物反应伴有嗜酸性粒细胞增多和全身症状 (DRESS) 的案例研究。当前药学设计。2019;25(16):1866-1880。https://doi.org/10.2174/1381612825666190628160603。10.De Pretis F,Osimani B.药物警戒计算方法的新见解:E-synthesis,一种用于因果评估的贝叶斯框架。国际环境研究公共卫生杂志。11.2019;16(12):1 – 19。https://doi.org/10.3390/ijerph16122221。De Pretis F、Landes J、Osimani B。E-synthesis:药物监测中因果关系评估的贝叶斯框架。Front Pharmacol 。2019;10:1-20。https://doi.org/10.3389/fphar.2019.01317。12。De Pretis F、Peden W、Landes J、Osimani B。药物警戒作为个性化证据。收录于:Beneduce C、Bertolaso M 编辑。个性化医疗正在形成。从生物学到医疗保健的哲学视角。瑞士 Cham:Springer;2021:19 即将出版。13.那不勒斯 RE。学习贝叶斯网络。Prentice Hall 人工智能系列。新泽西州 Upper Saddle River:Pearson Prentice Hall;2004 年。14.Hill AB。环境与疾病:关联还是因果关系?J R Soc Med。2015;108(1):32-37。本文首次发表于 JRSM 第 58 卷第 5 期,1965 年 5 月。https://doi.org/10.1177/ 0141076814562718。15.Mercuri M、Baigrie B、Upshur RE。从证据到建议:GRADE 能帮我们实现目标吗?J Eval Clin Pract 。2018;24(5):1232- 1239。https://doi.org/10.1111/jep.12857。
系统安全性、可靠性和风险分析是在整个系统生命周期中执行的重要任务,以确保安全关键系统的可靠性。概率风险评估 (PRA) 方法是广泛用于此目的的全面、结构化和逻辑方法。PRA 方法包括但不限于故障树分析 (FTA)、故障模式和影响分析 (FMEA) 和事件树分析 (ETA)。现代系统日益复杂,其动态行为能力使传统 PRA 技术难以准确分析此类系统。为了全面准确地分析复杂系统,需要考虑不同的特征,例如组件之间的功能依赖性、系统的时间行为、组件/系统的多种故障模式/状态以及系统行为和故障数据的不确定性。不幸的是,传统方法无法解释这些方面。贝叶斯网络 (BN) 因其灵活的结构和在分析过程中整合上述大部分方面的能力而在风险评估应用中广受欢迎。此外,BN 还具有执行诊断分析的能力。Petri 网是另一种能够对系统动态行为进行建模和分析的正式图形和数学工具。它们也越来越多地用于系统安全性、可靠性和风险评估。本文回顾了贝叶斯网络和 Petri 网在系统安全性、可靠性和风险评估中的应用。回顾强调了基于 BN 和 PN 的方法相对于其他传统方法的潜在用处,以及在不同实际应用场景中的相对优势和劣势。
系统安全性、可靠性和风险分析是在整个系统生命周期中执行的重要任务,以确保安全关键系统的可靠性。概率风险评估 (PRA) 方法是广泛用于此目的的全面、结构化和逻辑方法。PRA 方法包括但不限于故障树分析 (FTA)、故障模式和影响分析 (FMEA) 和事件树分析 (ETA)。现代系统日益复杂,其动态行为能力使传统 PRA 技术难以准确分析此类系统。为了全面准确地分析复杂系统,需要考虑不同的特征,例如组件之间的功能依赖性、系统的时间行为、组件/系统的多种故障模式/状态以及系统行为和故障数据的不确定性。不幸的是,传统方法无法解释这些方面。贝叶斯网络 (BN) 因其灵活的结构和在分析过程中纳入上述大部分方面的能力而在风险评估应用中广受欢迎。此外,BN 还能够执行诊断分析。 Petri 网是另一种能够对系统动态行为进行建模和分析的正式图形和数学工具。它们也越来越多地用于系统安全性、可靠性和风险评估。本文对 Petri 网进行了回顾
这是经过同行评审的、已接受作者手稿的以下研究文章:Sheil, BB、Suryasentana, SK、Templeman, JO、Phillips, BM、Cheng, WC 和 Zhang, L. (2022)。使用贝叶斯更新方法预测顶管力。岩土工程与土工环境工程杂志,148(1),[04021173]。https://doi.org/10.1061/(ASCE)GT.1943-5606.0002645
[1]出生,燃烧。“元素回归”。EC2019。[2] Cleinberg,Raghavan。 “算法单字”。 2021。 [3] Fenance和Al。 “ PYS-差异游戏”。 EC 2022 [4] Caplant和Al。 “在新的舌头模型上缩放”。 ARX 2020。[2] Cleinberg,Raghavan。“算法单字”。2021。[3] Fenance和Al。“ PYS-差异游戏”。EC 2022 [4] Caplant和Al。 “在新的舌头模型上缩放”。 ARX 2020。EC 2022 [4] Caplant和Al。“在新的舌头模型上缩放”。 ARX 2020。
▶在一项重要的工作中,Del Negro和Schorfheide(2009)提出了DSGE-VAR程序,该程序将结构性宏观经济模型(DSGE模型)的先前信息纳入了VAR模型
其中矩阵w(j)µ和w(j)σ表示层j,j j〜n(0,1)的后验分布的平均值和标准偏差,而操作员norm(β,βJ,γJ),可训练的参数βJ和γj的均值和标准偏差,可以指代任何批次,层,层,层,层或实例化。
Guo,B。和Zang,Y。 (2020)。 双岩:通过共同建模纵向免疫反应和事件时间疗效,用于免疫疗法的贝叶斯随机II期设计。 医学的统计数据,39(29),4439–4451。 https://doi.org/10.1002/sim.8733Guo,B。和Zang,Y。(2020)。双岩:通过共同建模纵向免疫反应和事件时间疗效,用于免疫疗法的贝叶斯随机II期设计。医学的统计数据,39(29),4439–4451。https://doi.org/10.1002/sim.8733
本文档根据知识共享署名-相同方式共享 4.0 国际许可证 (CC BY-SA 4.0) 进行授权:https://creativecommons.org/licenses/by-sa/4.0/deed.en