KRAS是各种癌症中著名的致癌驱动力和最常见的突变基因。KRAS循环加载了GDP加载的“ OFF”和加载GTP的“在”状态下,诱导下游信号转导,以促进细胞增殖和存活1-2)。“ ON”和“ OFF”状态之间的互连是由SOS(Sos(Sos of Leless的儿子)(Kras的二元分子开关)调节。SOS家族作为鸟嘌呤核苷酸交换因子(GEF)由SOS1和SOS2组成,但SOS1是KRAS途径负反馈调节的节点,而SOS2不是3)。由于SOS1是KRAS的直接上游,因此SOS1抑制剂有可能成为影响各种具有不同KRAS突变的癌症的泛Kras抑制剂。在此,我们探索了新型SOS1抑制剂HM99462,与KRAS G12CI或MAPK途径抑制剂结合使用,导致KRAS驱动的癌症的抗肿瘤活性显着增加。
摘要 本研究将分析PC1和PC2酶在肥胖和糖尿病中的不同作用和相互关系。两种酶在代谢过程中的底物特异性和功能存在明显差异。PC1主要参与胰岛素信号的负反馈调节,而PC2则可在脂肪细胞分化和能量代谢中发挥关键作用。基于此,PC1和PC2酶的调控将为相关代谢疾病的调控提供有效方案。此外,本研究将解释多巴胺和垂体分泌的激素如何作用于PC1和PC2酶的mRNA表达,从而影响胰岛素的分泌。抑制PC1活性可以改善胰岛素抵抗,从而缓解2型糖尿病的症状。相反,增强PC2活性可能有助于减少体内脂肪堆积和对抗肥胖。了解这两种酶之间的差异对于制定新的治疗策略具有重要意义。
气候变化对森林生长和繁殖的影响得到了广泛报道,但很少证明其相互作用的间接影响。在对欧洲山毛榉的43- y研究中,夏季温度升高导致种子产量更高(桅杆),从而增加了总生殖投资。这种增加的生殖工作耗尽了存储的资源,即使没有增加干旱压力,也会降低年增长率28%。减少的增长进一步降低了未来的生殖潜力,从而产生了负反馈循环。一场生长下降并减少可行种子产量的“完美风暴”威胁着欧洲最广泛的森林树的可持续性。我们揭示了一种间接的机制,气候变化危害了森林,强调了在评估物种对气候变化的敏感性时人口过程之间相互作用的重要性。
极高风险神经母细胞瘤的特征是 MAPK 信号传导增强,而针对 MAPK 信号传导是一种有前途的治疗策略。我们使用了一组经过深入表征的神经母细胞瘤细胞系,发现这些细胞系对 MEK 抑制剂的敏感性差异很大。通过生成定量扰动数据和数学建模,我们确定了潜在的耐药机制。我们发现,在耐药细胞系中,MAPK 信号传导和通过 IGF 受体的负反馈在治疗后介导 MAPK 信号的重新激活。通过使用细胞系特异性模型,我们预测 MEK 抑制剂与 RAF 或 IGFR 抑制剂的组合可以克服耐药性,并通过实验测试了这些预测。此外,磷酸化蛋白质组学分析证实了 MEK 和 IGFR 靶向治疗的细胞特异性反馈效应和协同作用。我们的研究表明,通过模型促进对信号传导和反馈机制的定量理解有助于制定和优化治疗策略。在规划未来将 MEKi 引入神经母细胞瘤治疗的临床试验时,应考虑我们的研究结果。
我们的身体自然会产生类固醇激素,产生矿物皮质激素(例如醛固酮),糖皮质激素和雄激素。皮质醇是产生的主要糖皮质激素,并支持许多生理功能,包括糖异生。这种皮质醇产生遵循昼夜模式,对人体具有多种生理影响。最高水平在早晨出现,然后全天下降,在一夜之间再次骑自行车。10-20 mg/天皮质醇是可接受的正常每日量,但由于压力,创伤,低血糖和其他需求增加产量的情况会改变。20当GC剂量高于生理水平时,会出现夸张的,药理作用,即抗炎,但它们也导致负反馈回路,导致与其使用有关的有问题的副作用,包括高血糖的潜力。GC的预期高血糖效应与其他因素以及其他因素相关的剂量,半衰期,个人的胰岛素抵抗或胰岛素缺乏程度有关。以下摘要点和表2、3和4可能有助于您了解类固醇治疗对患者的影响:
大多数人类是昼行性的,这意味着他们通常白天醒着,晚上睡觉。然而,许多其他动物并非如此,它们喜欢夜生活,全天休息。那么大脑如何决定我们是夜行性还是昼行性呢?许多生理过程,如清醒或睡眠,都与白天和黑夜的时间同步。这些活动由称为昼夜节律钟的分子振荡器调节,它由基因转录和蛋白质翻译的正反馈和负反馈回路组成,使过程以〜24 小时的周期发生。就像管弦乐队中的乐器一样,这些遍布全身的时钟发出的“滴答声”必须协调一致,以协调不同器官的活动。对于哺乳动物来说,这首交响曲的指挥是“主昼夜节律时钟”,它位于视交叉上核 (SCN),这是大脑下丘脑区域内约 20,000 个神经元组成的一个集群。SCN 中的每个神经元都会根据昼夜循环调整其电活动,最终产生身体遵循的节律输入(Reppert 和 Weaver,2002 年)。
目标导向的含义和起源:动态系统的视角 FRANCIS HEYLIGHEN 布鲁塞尔自由大学 Leo Apostel 中心,Pleinlaan 2, 1050 布鲁塞尔,比利时 本文试图阐明目标导向的概念,该概念常常被误解为与标准因果机制不一致。我们首先注意到,目标导向并不预设任何神秘的力量,例如智能设计、活力论、有意识的意图或反向因果关系。然后,我们回顾了通过更具操作性的特征来定义目标导向的尝试:等效性、可塑性、持久性、协同作用和负反馈。我们表明,所有这些特征都可以通过将目标解释为动态系统的远离平衡的吸引子来解释。这意味着,只要系统保持在同一吸引域内,使系统偏离其目标导向轨迹的扰动就会自动得到补偿——至少是这样。我们认为,具备必要的恢复力的吸引子和吸引域往往会在复杂的反应网络中自组织,从而产生自我维持的“组织”。这些可以被看作是第一个目标导向系统的抽象模型,因此也是生命起源的抽象模型。 其他关键词:等效性 - 可塑性 - 持久性 - 协同作用 - 负反馈 - 吸引子 - 吸引域 - 恢复力 - 自我维持 - 生命起源。 _____________________________________________________________________ 引言 关于目的或目标的概念是否适合于科学理论,一直存在着争议(Deacon & Sherman,2007)。科学的标准本体论是因果论:它假设系统的当前行为完全由过去的原因决定,包括系统先前的状态以及作用于系统状态的任何力量或输入。因此,未来的目标似乎没有空间影响当前的行为。此外,将目标导向应用于生物系统已经声名狼藉,因为它与许多与我们目前对生命的理解不相容的解释有关,包括造物主强加的目的、智能设计、神秘的“生命力”,以及目标导向行为需要有意识的意图的假设。然而,在实践中,科学家和普通人都广泛使用目标导向的概念,因为它为常见现象提供了一个简单而有用的解释。如果你看到一个人在厨房里准备食材,那么你可以放心地假设他的目的是准备一顿饭。如果猎豹追赶瞪羚,它的目标显然是杀死并吃掉那只瞪羚。猎豹在狩猎过程中采取的所有动作,例如加速、跳到瞪羚背上或咬住瞪羚的喉咙,可以这样理解:假设它们针对的是
通过 3 层激酶级联,从输出到输入信号有负反馈,从而确保对噪声和分级响应的鲁棒性 [2]。MAPK 对各种各样的输入信号作出反应,包括激素、细胞因子和生长因子等生理线索,以及内源性应激和环境信号。因此,传统上将它们分为丝裂原激活 MAPK 和应激激活 MAPK,经典代表有丝裂原反应的 ERK 以及应激反应的 JNK 和 p38。从生理学上讲,这种区别很模糊,因为这三个家族都对各种各样重叠的信号作出反应。MAPK 信号在许多疾病中发生了改变 [3],因此,在过去的二十年里,其激酶成分一直是药物开发的焦点。在癌症和针对 RAS-RAF-MEK-ERK 通路的药物方面取得了最大的进展。人们已经对针对该通路的药物进行了大量的研究,并阐明了敏感性和耐药性的机制。由于研究结果已被广泛综述 [ 4 – 13 ],我们在此仅简要总结一些突出的发现。相反,我们重点讨论 MAPK 信号传导中较少综述的领域及其与耐药性的相关性,即 JNK 和 p38 MAPK 通路,以及与 MAPK 信号传导相关的表观遗传和代谢变化。
摘要:本文介绍了一种低压差稳压器,其规格适用于助听器设备。所提出的 LDO 占用的芯片面积非常小,并提供出色的瞬态响应。LDO 架构中采用了一种新颖的电压尖峰抑制器模块,可降低负载突变期间输出电压的下冲和过冲。它引入了一个次级负反馈环路,其延迟小于主环路,并在需要时将静态电流引导至输出节点。这不仅提高了整体电流效率,而且还降低了片上电容。所提出的 LDO 采用 180 nm 标准 CMOS 技术进行布局,并进行了后布局模拟。当施加 1 V 的最小电源电压时,LDO 产生 0.9 V 输出。调节器可以驱动 0.5 mA 的最大负载。LDO 分别表现出 4.4 mV/V 和 800 μ V/mA 的线路和负载调节。当受到阶跃负载变化的影响时,记录到 20.34 mV 的下冲和 30.28 mV 的过冲。为了使 LDO 正常运行,只需要 4.5 pF 的片上电容。
摘要简介:糖皮质激素受体对控制皮质营养素(ACTH)分泌至关重要,其功能与热休克蛋白90(HSP90)Chaperone Conseption密切相关。对糖皮质激素反馈的敏感性受损是人类皮质营养腺瘤的标志,即库欣的疾病,这种疾病几乎没有医疗选择。硅蛋白是一种HSP90抑制剂,已在肿瘤皮质营养细胞中进行了研究,并在库欣疾病中提出了其使用。本研究的目的是进一步研究硅酸磷脂对人皮质营养腺瘤在体外的影响。方法:在培养物中建立了七个分泌垂体的垂体腺瘤,并用10-50 µm硅质素治疗,持有/不含地塞米松的硅质蛋白,长达72小时。测量ACTH培养基水平,并评估了pOMC和糖皮质激素受体,即NR3C1,评估了基因表达。结果:在单个腺瘤中,硅酸盐素减少了自发的ACTH分泌,并恢复了对类固醇负反馈的敏感性。POMC表达在对照和地塞米松处理的孔中都降低了对