哮喘是一种慢性气道障碍,它在现代获得了大流行的维度,目前影响了全球超过3亿人。我们知道,解释全球哮喘患病率急剧增加的主要假设之一是侧重于缺乏免疫学耐受性的假设。我们先前证明了对过敏原的T记忆细胞介导的异源免疫和免受实验性哮喘的保护。从那时起,我们观察到其他流行病学相关的呼吸道病毒可能具有相似的影响。更重要的是,对于已经确定的哮喘的人来说,绝大多数加重之前是上呼吸道感染,通常是由呼吸道病毒引起的。在SARS-COV-2的情况下,我们假设哮喘T2型的人可能会根据我们自己的病毒/过敏原交叉反应数据而受到病毒感染的风险较低,这也可能是由于其他机制所致。生物标志物用于哮喘的生物标志物对于支持此类患者的预后和管理以及在公共卫生策略(例如免疫)的背景下的优先次序非常有用。报道了关于哮喘患者在COVID-19的风险的差异,可能会反映这些研究所涉及的人口特征和相关偏见的差异。我们以前曾在医院的199名患者中,在德国马尔堡(德国),宾夕法尼亚州和斯坦福大学(美国)的大学医院中,自身抗体的患病率很高。t细胞激活和效应功能高度依赖于线粒体功能。在某些情况下,这种自身抗体在这些患者的住院期间从头发展而发病。在我们的后续工作中,我们表明抗胞因子抗体在住院重症监护病房的患者中也非常普遍,尽管与未报告感染的人相比,患有记录的感染的患病率更高。自身抗体在感染的背景下可能具有潜在的好处,例如对细胞因子提供负反馈,从而防止细胞因子风暴。当然,也可能是对感染的适当免疫反应等负面后果。呼吸道病毒也导致大多数急性COPD恶化,在这方面的细胞免疫力至关重要。我们的数据表明,线粒体ROS的抑制可能是衰减烟雾诱导的高蛋白浮肿的有效策略,而不会损害抗病毒免疫。
大西洋尼诺现象表现出与太平洋中更强的厄尔尼诺 - 南方振荡1,2(enso)的相似之处。东部赤道大西洋异常温暖,表面贸易风光放松,降雨在正大西洋尼诺尼诺3 - 6个事件中偏向赤道。赤道冷舌中的海面温度(SST)异常可以达到1.5°C,当事件达到峰值时,在北方夏季,热跃层(20°C等温线)的深度异常可能会超过30 m。在负面事件中发现相反的条件。耦合的海洋 - 大气相互作用 - BJERKNES呈阳性和延迟的负反馈 - 与太平洋中的反馈相似,可以解释大多数大西洋Niño的可变性,但其他机制可以对赤道SST异常造成重大贡献。大西洋尼诺尼诺对气候8 - 10和热带大西洋地区的海洋生物地球化学11,12在ENSO 13 - 17和热带气候18 - 21中具有重要影响。最近的研究表明,在过去的几十年中22 - 24年,大西洋尼诺变异性的变化较弱。东部地球大西洋SST变异性的变化归因于BJERKNES反馈23(BF)弱化的综合作用和增加的热通量阻尼23、24以及与cli-Menate Change相关的盆地范围内变暖22。这些研究使用观察和重新分析数据集研究历史时期SST变异性的变化。对耦合模型比较项目(CMIP)预测的广泛分析表明,在全球变暖下,ENSO事件将变得更强大,但存在大型不确定性25 - 30。在热带大西洋第31-34页中的大型气候模型偏见劝阻气候社区对该地区的气候变化进行了类似的深入评估,预计在模拟的大西洋大道上的多变量和他们的影响下,预计较大的不确定性弱势群体的较大不确定性也是如此。虽然已经确定了未来全球变暖下的大西洋尼罗尼诺电信的稳健转变和削弱21、35,但在当地降雨反应中存在大型不确定性
摘要 背景 卵巢癌 (OC) 是女性第五大致命癌症,迫切需要新型疗法。临床前研究表明,DNA 甲基转移酶抑制剂 (DNMTis) 可以逆转 OC 中的免疫抑制肿瘤微环境。抑制 DNA 甲基转移酶可激活双链 (ds)RNA 的转录,包括转座因子。这些 dsRNA 激活细胞质中的传感器并触发 I 型干扰素 (IFN) 信号传导,招募宿主免疫细胞杀死肿瘤细胞。腺苷脱氨酶 1 (ADAR1) 由 IFN 信号传导诱导,并通过 A 到 I 核苷酸变化编辑哺乳动物 dsRNA,这在测序数据中读取为 A 到 G 的变化。这些编辑后的 dsRNA 无法被 dsRNA 传感器感知,因此 ADAR1 在负反馈回路中抑制 I 型 IFN 反应。我们假设减少 ADAR1 编辑将增强 DNMTi 诱导的免疫反应。方法用 DNMTi 体外处理人类 OC 细胞系,然后进行 RNA 测序以测量 RNA 编辑。Adar1 在 ID8 Trp53 -/- 小鼠 OC 细胞中被稳定敲低。用模拟或 DNMTi 处理测试对照细胞 (shGFP) 或 shAdar1 细胞。使用流式细胞术对肿瘤浸润免疫细胞进行免疫表型分析,并分析细胞培养上清液中分泌的趋化因子/细胞因子。给小鼠注射同源 shAdar1 ID8 Trp53 -/- 细胞并用四氢尿苷/DNMTi 处理,同时每 3 天给予抗干扰素 α 和 β 受体 1、抗 CD8 或抗 NK1.1 抗体。结果我们表明,在体外 DNMTi 处理后,ADAR1 会编辑人类 OC 细胞系中的转座因子。与单独干扰相比,将 ADAR1 敲低与 DNMTi 相结合可显著增加促炎性细胞因子/趋化因子的产生和对 IFN- β 的敏感性。此外,DNMTi 治疗和 Adar1 缺失可减轻肿瘤负担并延长 OC 免疫功能正常的小鼠模型的生存期。将 Adar1 缺失和 DNMTi 相结合可引发最强大的抗肿瘤反应,并通过增加 CD8+ T 细胞的募集和激活来改变免疫微环境。
我们研究了 [ 18 F]FDG PET 作为 PI3K 通路靶向治疗反应生物标志物在两种 HER-2 过表达癌症模型中的潜在用途。方法 . CD-1 裸鼠接种 HER-2 过表达的 JIMT1(曲妥珠单抗耐药)或 SKOV3(曲妥珠单抗敏感)人类癌细胞。动物接受曲妥珠单抗、依维莫司(mTOR 抑制剂)、PIK90(PI3K 抑制剂)、生理盐水或联合疗法治疗。在治疗开始后、治疗开始后两天和七天进行 [ 18 F]FDG 扫描。在 CT 图像上勾画肿瘤,并计算相对肿瘤体积 (RTV) 和最大标准化摄取值 (SUV max )。用 ELISA 测定蛋白质肿瘤裂解物上的 pS6 和 pAkt 水平。结果。在 SKOV3 异种移植瘤中,所有治疗方案均导致 RTV 和 delta SUV max(ΔSUV max)逐渐下降。对于所有治疗方案,2 天后的 ΔSUV max 可预测 7 天后的 RTV(r = 0:69,p = 0:030)。在 JIMT1 肿瘤中,依维莫司或 PIK90 单药治疗在治疗 7 天后导致 RTV(分别为 -30%±10% 和 -20%±20%)和 ΔSUV max(分别为 -39%±36% 和 -42%±8%)下降,但不会提前下降,而曲妥珠单抗与对照组相比导致不显着的增加。联合疗法在第 2 天就已导致 RTV 和 Δ SUV max 下降,但曲妥珠单抗 + 依维莫司除外,在该疗法中观察到早期反应。对于所有联合治疗,2 天后的 Δ SUV max 可预测 7 天后的 RTV (r = 0.48,p = 0.028),但当排除与依维莫司 (r = 0.59,p = 0.023) 或曲妥珠单抗 (r = 0.69,p = 0.015) 联合使用时,相关性可以得到改善。结论。2 天后 [18 F]FDG 的降低与治疗 7 天后的肿瘤体积变化相关,并证实了使用 [18 F]FDG PET 作为早期反应生物标志物的效果。然而,由于负反馈回路和不同通路之间的串扰导致[ 18 F]FDG 摄取暂时增加,含有曲妥珠单抗或依维莫司的方案中的治疗反应可能被低估。
第一章:糖尿病1.1简介葡萄糖是人体的主要能源之一。在正常生理学中,人体将血糖水平保持在狭窄的范围内(80-120mg/dl)。血糖在肝脏的内源性外观(通过糖原分解和糖异生)和肾脏,肠外源性外观(进餐后)以及所有组织对葡萄糖的利用之间保持平衡。存在两个总代谢条件。禁食时,人体主要依赖于以甘油三酸酯形式储存的糖原和脂肪酸形式储存的葡萄糖来促进其代谢需求。饭后,从肠道中吸收的葡萄糖被用来补充禁食时减少的糖原和脂肪储存。人体通过从胰腺B细胞中分泌内分泌激素胰岛素来调节控制葡萄糖的产生和存储的过程。胰岛素促进整个身体的合成代谢代谢。胰岛素在基础浓度以上(2-12 mU/L)以上的增加将减少肝脏从肝脏中释放,并增加葡萄糖摄取到胰岛素受诱导的组织中。这具有降低内源性血糖外观的净效应[1]。人体中有许多促进和抑制胰岛素分泌的物质,完善了B细胞对人体代谢状态变化的细节。葡萄糖是迄今为止胰岛素分泌的主要刺激,建立了胰岛素分泌与体内血糖水平之间的直接关系。当葡萄糖浓度增加时,胰岛素浓度也会增加 - 一种经典的负反馈系统,可将血糖置于非常狭窄的范围内。在糖尿病中,血糖水平的解耦和胰岛素的浓度可防止适当调节血糖(图1)。而不是狭窄的血糖范围,血糖偏差可以从低血糖(小于60 mg/dl)延伸到高血糖(空腹血糖大于126 mg/dl,植物后血糖大于200 mg/dl)。这可能是完全胰岛素缺乏症的结果,该缺乏症被归类为胰岛素依赖性糖尿病(1型糖尿病)。然而,糖尿病的主要形式是非胰岛素依赖性糖尿病(2型糖尿病)。那些患有2型糖尿病的人通常会超重,久坐的生活方式。对胰岛素的异常耐药性会导致持续性高血糖,尤其是在进餐后。第三类糖尿病,妊娠糖尿病在怀孕期间出现,这是母亲和发育中的胎儿的健康问题。
NC CAH 可能要到以后才能发现,而更严重的单纯男性化 (SV) 和 SW CAH 则可通过新生儿筛查计划发现,这是新生儿时期经历肾上腺危象或女性男性化的结果(4,7)。早在宫内,皮质醇缺乏就会导致下丘脑-垂体-肾上腺 (HPA) 轴负反馈减弱或完全缺失,从而导致促肾上腺皮质激素 (ACTH) 过量产生。过量的 ACTH 被分流到肾上腺皮质中的雄激素生成途径,从而导致脱氢表雄酮和其他肾上腺雄激素的过量产生(8,9,10)。在胎儿期,外生殖器在妊娠第 7 周左右开始发育,女性需要通过皮质醇抑制肾上腺雄激素,以确保女性性发育并防止生殖器男性化。换句话说,过高的雄激素水平会导致女性生殖器向男性表型发育。因此,缺乏 HPA 轴抑制会导致严重的男性化,包括阴蒂增大和阴唇融合,以至于患有 CAH 的女孩有时在出生时会被诊断出错误的性别。男性化的程度取决于 CAH 基因型,并根据 Prader 分期进行分类。生殖器男性化可能会给患者带来心理和生理问题(11,12)。为了改善男性化,可以在幼儿期(大约 1.5 岁)或青春期进行生殖器手术(13,14,15)。简而言之,早期手术干预的结果并不理想,此外,手术是在未经患者同意的情况下对非危及生命的疾病进行的。虽然短期手术并发症可以得到控制(13、16、17),但即使手术是在较晚的年龄进行的(18、19、20),也无法避免与性功能相关的长期负面影响,而且这种情况经常被报道(15)。或者,患者和父母可以选择不进行手术。有迹象表明,单靠 GC 治疗就能将阴蒂长度缩短到一半以下(21),这使早期手术的必要性受到质疑。在成长过程中,对父母和未接受手术的女孩进行教育和心理支持非常重要。未来的研究应该调查女孩选择或不选择早期手术的经历、生活质量和心理结果。对于有生育 SV 或 SW CAH 孩子风险的夫妇,可以给孕妇服用合成的 GC 地塞米松 (DEX),以预防/减少 CAH 女孩的男性化。自 1980 年代以来,这种治疗方法就一直被使用 ( 22 )。然而,产前暴露
简介 肿瘤抑制蛋白 p53 在癌细胞周期中起着至关重要的作用 (1, 2)。大约 50% 的癌症都存在 TP53 基因突变 (2, 3)。在具有 WT p53 的细胞中,由于细胞应激或 DNA 损伤而激活 p53 会导致许多 p53 靶基因的转录激活,从而导致细胞周期停滞、凋亡或衰老 (1, 2, 4)。细胞中的 WT p53 水平受负反馈回路调节。激活的 p53 与 MDM2 基因中的 p53 反应元件结合,导致 MDM2 表达增加。MDM2 蛋白是一种 E3 泛素连接酶,反过来又与 p53 结合并泛素化,导致其被蛋白酶体降解 (5–9)。因此,MDM2 是 p53 的重要调节因子,可以成为具有 WT p53 的癌症的有效治疗靶点。多年来,人们一直对通过药物抑制 MDM2 来稳定 p53 感兴趣,尤其是对于伴有 MDM2 扩增的癌症,包括脂肪肉瘤、尤文氏肉瘤、骨肉瘤和白血病 (2, 10–12)。目前有几种针对 MDM2-p53 相互作用的 MDM2 抑制剂正在临床试验中用于治疗这些癌症 (2),尽管没有一种抑制剂获得 FDA 批准用于任何治疗用途。默克尔细胞癌 (MCC) 是一种高度侵袭性的皮肤神经内分泌癌,发病率很高 (13–15)。MCC 经常转移到淋巴结和远处器官,包括肝脏、骨骼、胰腺、肺和脑 (13–15)。MCC 有两种不同的病因。克隆整合的默克尔细胞多瘤病毒 (MCPyV) 存在于病毒阳性的 MCC (MCCP) 中。这些肿瘤的肿瘤突变负荷较低,具有接近正常的二倍体基因组 (14–20)。相反,病毒阴性 MCC (MCCN) 肿瘤是由慢性紫外线照射引起的,导致高突变负荷和强烈的紫外线突变特征 (14–20)。尽管病因不同,但两种形式的 MCC 都表现出相似的组织学、侵袭性表型和对治疗的反应,表明它们扰乱了相似的致癌途径。虽然 MCCN 通常含有 TP53 和视网膜母细胞瘤肿瘤抑制因子 (RB1) 的功能丧失突变,但 MCCP 通常含有 WT p53 和视网膜母细胞瘤 (RB) 蛋白 (14、15、20–22)。大约 80% 的 MCC 肿瘤是 MCCP,其中大多数具有 WT p53 (16、18、20、23–26)。
*通讯地址:sascha.hoogendoorn@unige.ch 摘要 从表型筛选中得到的小分子命中物的靶标反卷积是一项重大挑战。许多筛选都表明,人们已进行许多筛选来寻找 Hedgehog (Hh) 信号通路的抑制剂,Hedgehog (Hh) 信号通路是一条与健康和疾病有着诸多关系的主要发育通路,其中有许多命中物但很少有确定的细胞靶标。我们在此提出一种基于蛋白水解靶向嵌合体 (PROTAC) 结合无标记定量蛋白质组学的靶标识别策略。我们开发了一种基于下游 Hedgehog 通路抑制剂-1 (HPI-1) 的 PROTAC,HPI-1 是一种具有未知细胞靶标的表型筛选命中物。使用我们的 Hedgehog 通路 PROTAC (HPP),我们确定并验证了 BET 溴结构域是 HPI-1 的细胞靶标。此外,我们发现 HPP-9 通过延长 BET 溴结构域降解时间,具有作为长效 Hh 通路抑制剂的独特作用机制。总之,我们提供了一种强大的基于 PROTAC 的靶标反卷积方法,该方法回答了 HPI-1 的细胞靶标这个长期存在的问题,并产生了第一个作用于 Hh 通路的 PROTAC。主要 Hedgehog 通路是一个复杂的细胞信号级联,可调节胚胎发育过程,例如模式化,以及干细胞维持和组织稳态。1,2 Hedgehog 信号转导生理水平的失调会导致发育障碍以及各种癌症的发生和进展,最显著的是基底细胞癌和髓母细胞瘤。3,4 正常条件下的通路激活是由其中一种 Hedgehog 蛋白 (IHH、DHH、SHH) 与受体 Patched (PTCH1) 结合启动的。 5–7 HH 与 PTCH1 结合可释放后者对 Smoothened (SMO) 的抑制作用。8,9 进一步的激活步骤包括与融合抑制因子 (SUFU) 结合的 GLI2/3 转录因子通过初级纤毛的尖端运输并积累。10–13 GLI 转录因子加工成其转录活性形式,然后导致 Hedgehog 靶基因的转录,其中包括正调节剂 Gli1 和负反馈回路中的 Ptch1。14,15 目前,唯一获得临床批准用于对抗 Hh 通路驱动癌症的药物是针对 SMO(vismodegib、sonidegib)的药物。由下游通路激活驱动的癌症本质上对这些药物不敏感,并且最初有反应的肿瘤获得性耐药很常见。16–
佐治亚理工学院电气与计算机工程学院 ECE 3400 模拟电子学 2025 年春季 讲师:Gabriel A. Rincón-Mora 教授,博士电子邮件地址:Rincon-Mora@gatech.edu URL:Rincon-Mora.gatech.edu 讲座:每周一/周三下午 3:30–4:45 在 Van Leer C456 办公时间:课程问题:每周二晚上 7:30 使用 Zoom 进行问答环节 学术地位/个人事务:发送电子邮件进行咨询 课程网址:Rincon-Mora.gatech.edu/classes SPICE 模拟器:链接在“SPICE 页面”链接下 教学大纲:链接在“ECE 3400 模拟电子学”链接下 先决条件:ECE 3040 微电子电路 课程描述:ECE 3400 扩展了 ECE 2040 和 3040 中开始的半导体器件、电路和应用的概念,并提供了概念、问题解决技术和后续电子学课程所需的工具。本材料介绍、解释并展示了如何使用电气元件来建模、分析和设计滤波器、箝位器、整流器、峰值检测器、运算放大器电路、晶体管放大器和振荡器。其根本目的是培养和发展对电子设备在模拟电路中单独和集体工作的洞察力和直觉。本材料介绍了超越数学并促进创新的电路工程视角。教育成果:1. 分析一阶、二阶和双二次无源/有源滤波器。2. 分析箝位器、整流器和峰值检测器。3. 分析负反馈电路。4. 分析带有 BJT 和 MOSFET 的放大器和振荡器。5. 使用 SPICE 模拟电路。成绩构成: 第一次期中考试 = 20% 第二次期中考试 = 25% 期末考试 = 30% 作业 = 20% 出勤率/专业水平(遵守教学大纲和 ECE 政策)= 5% 可能因特别努力而获得额外学分。 重要日期: 开学第一天 1 月 6 日(星期一) 学校假期 | 假期 1 月 20 日(星期一)| 3 月 17-21 日(星期一至星期五) 第一次|第二次期中考试 2 月 10 日(星期一)| 3 月 12 日(星期三) 退课最后一天 TBD(TBD) 最后上课天 4 月 21 日(星期一)- 最后一份作业截止时间为 4 月 21 日 期末考试 4 月 30 日(星期三)下午 2:40-5:30 在 VL 456 课堂上 讲座来自:模拟电子学,第二版。纽约:KDP(www.amazon.com/dp/B0C47R2KQP)。教科书:《微电子电路设计》,第 6 版。麦格劳-希尔出版社,2023 年。参考文献:《开关电感器功率 IC 设计》,Springer。2022 年(通过 GT 图书馆在线访问)。《带低压差稳压器的模拟 IC 设计》,第 2 版。麦格劳-希尔出版社,2014 年。YouTube 视频链接在课程 URL 下的“…YouTube 视频…”链接下。建议:复习每次讲座后呈现的材料,做笔记并提问。将书带到课堂上并对其进行注释或在笔记中引用。
版权所有:William E. Rees,2021 您可以在 https://rwer.wordpress.com/comments-on-rwer-issue-no-96/ 对本文发表评论 介绍人类的困境 我们注定要生活在一个有趣的时代。在过度的经济活动和人口增长的推动下,人类事业处于“生态超调”的危险状态。当人类对可再生(自产)资源的需求超过生态系统的再生能力,并且人类及其经济的废物排放量超过生态系统的同化/循环利用能力时,就会出现生态超调(以下简称“EO”)。这是生物物理不可持续性的典型定义。 2021 年的“超调日”是 7 月 29 日。这是人类集体生物资源消耗和废物生产 1 将“耗尽自然界全年预算”的日期(GFN,2021 年)。从 7 月 29 日起,我们将进一步侵蚀剩余的所谓自然资本(鱼类资源、森林、可耕地、生物多样性、地下水等),并过度填充自然界失效的废物池,从而维持自身和累积的制造资本资产,并发展“经济”。想想“气候变化”,这是社会当前对环境的痴迷:工业社会目前每年排放约 370 亿吨二氧化碳——气候变化的主要人为驱动因素——其中约一半积累在大气中(NOAA,2021a)。2021 年,二氧化碳平均浓度将超过 416 ppm,比工业化前的 280 ppm 浓度高出 48%(并且仍以每年近 3 ppm 的速度增长)(NOAA,2021b)。EO 是一种新现象。从解剖学上来说,现代智人已经存在了 30 多万年 (Callaway, 2017),但到 19 世纪初,他们用了几乎整个时期才达到 10 亿人口。然后,在仅仅 200 年的时间里,也就是不到 1/1500 的时间里,人类数量膨胀了 7 倍,到 2021 年将超过 79 亿(图 1)。与此同时,实际世界总产值增长了 100 倍以上,人均收入(消费)增长了 13 倍(富裕国家为 25 倍) (Roser, 2013)。当然,地球并没有变大。我们可以从人类事业的突然、指数级扩张中直接得出两个重要的教训。首先,整个现象都是由化石燃料实现的。世界总产值和化石能源消耗(以及碳排放)同步增长;个别工业化国家也存在类似的关系,但变化很容易解释(例如,Chima and Freed,2005)。显然,科学革命的其他产物(例如,改善公共卫生)也促进了经济繁荣,但化石燃料(FF)是必不可少的。FF 为全球工业机器提供动力;它们曾经是(现在仍然是)人类获取所有食物和其他物质资源的主要手段,这些资源是人类以几乎全部的生物潜力扩大人类事业所必需的。从种群生态学的角度来看,快速发展的技术和丰富的廉价能源消除了许多历史上限制我们人口增长的“负反馈”(例如疾病、食物和其他资源短缺等)。人类数量和几乎所有与智人有关的物质流动