即使本保险单有任何相反规定,本保险单也不承保直接或间接因战争、入侵、外国敌人的行为、敌对行为(无论是否宣布开战)、内战、叛乱、革命、起义、军事或篡夺权力或没收或国有化或征用或任何政府或公共或地方当局命令对财产进行的毁坏或损坏而引起、发生或导致的损失或损害。
堪萨斯州,俄克拉荷马州,德克萨斯州,华盛顿,科罗拉多州,内布拉斯加州〜200m闲置英亩可用的夏季夏季休息室,可用于粮食生产的气候智能智能赠款赠款遗传学的重点,每英亩的油含量要大得多,比普遍生长的油料中的油脂进食量大得多,•至少要在新西部遗传植物量产生80剂的植物•plant of 80 call•plant of 80 call•plast of plant of plant ploter plant of 80 call•plant of plant of 80 call•二月在7月收获的土地和地面已准备好在9月冬季种植•在闲置的农田大麻上种植非食品油种子作物可能是美国种植的最高产量的非食品农作物!
塞巴斯蒂安·索伊克(Sebastian Soyk),1,10 Zachary H. Lemmon,1,10 Matan Oved,2 Josef Fisher,2 Katie L. Liberatore,1,3,8 Soon Ju Park,4 Anna Goren,Anna Goren,5 Ke Jiang,5 Ke Jiang,1,9 Alexis Ramos,1,9 Alexis Ramos,6 Esther van der Knaap,6 Esther Van der Knaap,6 Esther van der Knaap,6 Esther van der knaap,6 Joyce van eck,7 Dani and Z eck and Z ece and B. Lippman 1,3,11, * 1 Cold Spring Harbour实验室,纽约州冷泉港,11724,美国2,美国2号农业学院,耶路撒冷希伯来大学,Rehovot 76100,以色列3 WATSON生物学科学学院,Cold Spring Harbour Sciences,Cold Spring Harbor韩国众议院众议员Jeonbuk 54538植物与环境科学系,魏兹曼科学研究所,Rehovot 76100,以色列6植物育种研究所,遗传与基因组学研究所,佐治亚大学,雅典,雅典,GA 30602,GA 30602,USA 7美国农业,圣保罗,明尼苏达州55108,美国9现在的地址:印第安纳波利斯的道路Agrosciences,46268,美国10,这些作者同等贡献11个铅接触 *通信 *通信:lippman@cshl.edu http://dx.doii.doi.doi.doi.org/10.10.10.1016/j.cell.cell.cell.cell.cell.2017.032
此外,当在这些先进节点中考虑单粒子瞬变 (SET) 时,对软错误的敏感性会变得更加糟糕。此类 SET 可能是由高能粒子(如宇宙中子)撞击半导体器件敏感区域引起的,这会影响电路性能。16,17 例如,当粒子撞击硅衬底时,它们会产生二次电子-空穴对,这些电子-空穴对可被周围的 pn 结收集,从而影响器件行为。18,19 发射的阿尔法粒子主要是由于芯片封装中的铀和钍杂质的放射性衰变。当阿尔法粒子穿过半导体器件时,电子会沿着阿尔法粒子的轨迹从晶格位置脱落。20,21 临界电荷是翻转逻辑所需的最小电荷。除了单粒子放电 (SET) 之外,撞击还可能导致单粒子翻转 (SEU),这两者都会妨碍电路的正常运行,并导致软错误。22-25 质子的直接电离可能会导致临界电荷 (Q crit) 较低的器件发生 SEU。26
Krishan Bishnoi Farzad Rostam-Abadi 美国陆军 TARDEC 沃伦,密歇根州 摘要 一种功能分级 NPR(负泊松比)材料概念已被开发用于陆军的一项关键应用——防爆。目标是开发一种综合计算设计方法和创新的结构材料概念,用于防爆导流板,该导流板可以将材料集中到最需要的区域,并利用爆炸能量调整其形状,以提高爆炸缓解和乘员保护。计算设计方法包括最佳导流板形状设计和最佳 NPR 材料分布,以进一步提高防护效果,同时最大限度地降低车辆的 CG 高度和导流板的重量。使用这种新概念制造的结构会对爆炸做出反应,并在爆炸力下重新配置,以提供最大的防爆保护。所介绍的研究工作包括两种基本的导流板设计方法:最佳导流板形状设计和创新导流板中的最佳 NPR 材料配置和分布。引言负泊松比 (NPR) 材料也称为膨胀材料 [1-2],由于其独特的行为而备受关注。与传统材料不同,NPR 材料沿垂直方向压缩时可能会收缩,这导致材料在压缩载荷下可以自身集中以更好地抵抗载荷的独特特性。当载荷幅度增加时,它也会变得更硬、更坚固。研究发现,NPR 可以改善材料/结构性能,包括增强的耐热/抗冲击性、断裂韧性、抗压痕性和剪切模量等 [1-3]。人们研究了一系列人造 NPR 材料/结构,例如键合砖结构、典型的多孔材料(蜂窝和泡沫)、微孔聚合物和分子 NPR 材料,其中一些已经成功制造 [4-7]。作者开发了一种三维版本的 NPR 材料 [8],具有多种应用潜力,包括图 1 所示的防爆结构。
1 计算机科学系,计算机与信息科学学院,诺拉宾特阿卜杜勒拉赫曼公主大学,利雅得 11671,沙特阿拉伯;nosalghamdi@pnu.edu.sa 2 科技创新学院,扎耶德大学,迪拜 19282,阿拉伯联合酋长国;fatma.taher@zu.ac.ae 3 路易斯维尔大学生物工程系,路易斯维尔,肯塔基州 40292,美国;hekand01@louisville.edu (HK);a.sharafeldeen@louisville.edu (AS);aaelna02@louisville.edu (AE);ahmed.soliman@louisville.edu (AS);y.elnakieb@louisville.edu (YE); ahmahm01@louisville.edu (AM) 4 信息技术系,计算机与信息学学院,曼苏拉大学,曼苏拉 35516,埃及 5 电气、计算机与生物医学工程系,阿布扎比大学,阿布扎比 59911,阿拉伯联合酋长国;mohammed.ghazal@adu.ac.ae * 通信地址:aselba01@louisville.edu † 这些作者对这项工作做出了同等贡献。
抽象以计算机科学为导向和以神经科学为导向的是开发人工通用智能(AGI)的两种通用方法。在这项研究中,使用用于AGI应用的神经科学方法开发了硅神经元晶体管。神经元行为(“加权总和和阈值”功能)基于互补的金属 - 氧化物 - 半导体(CMOS)负差异电阻(NDR)理论。神经元晶体管由UMC 180-nm商业标准CMOS流程实施,这是有益的,可以实现整个神经网络或与同一芯片上的其他CMOS电路集成。神经元tran-sistor由三个输入V G1,V G2和V G3组成,以及一个控制端子,V con,一个负载端子,V B(负载)和驱动程序端子,V B(驱动程序)。每个输入的宽度为1.8 µm,并且输入分别具有1、2和4填充物,即重量比为1:2:4。v B(负载)和V B(驱动器)使神经元晶体管更加类似于真正的生物神经元,与传统的人工神经网络相比,灵敏度的提高且复杂性较小。以10 kHz的最大频率测量神经元MOS晶体管。它的功率消耗极低,为<10-4 µ w,而占地面积为30×15 µm 2。随着过程特征大小的减小,芯片的工作频率可以增加一个数量级,而其功耗和足迹将减少。关键字:人工通用智能(AGI),CMOSFET电路,人工神经网络(ANNS),硅神经晶体管,负差异抵抗(NDR)分类(NDR)分类:集成电路(内存,逻辑,逻辑,模拟,RF,RF,RF,Sensor)
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
c) 计算每个速度下通过四分之一弦点的俯仰力矩与攻角的关系,并将结果显示在表格中。5. a)。以 20、35 和 50 米/秒的空速运行风洞,并在攻角为 0°、4°、8°、12° 和 16° 时获取垂直安装的压力翼尾流中的尾流压力测量值。每次设置数据之前,务必检查机翼和皮托管的零速度压力测量值。您需要测量并校正零速度时压力传感器中的任何偏移。注意:在较小的攻角值(即最多约 8 度)下,可用的耙子可以充分覆盖整个尾流场。但是,在较高的攻角下,耙子可能无法完全覆盖尾流。为了正确测量这些极端值的尾流场,您需要将耙子移到机翼上方和下方。有关最高攻角尾流场测量设置的帮助,请咨询助教、教授或技术员)b) 绘制标准化尾流测量压力分布 q / q ∞ 与三种不同速度下每个攻角的尾流距离的关系。c) 通过对每个攻角和三个速度的尾流压力分布进行积分,用动量法计算翼型的阻力系数。绘制实验中使用的每个流速的阻力系数与攻角的关系,并将此结果与上面第 3 部分计算出的阻力进行比较。确保对两个不同阻力估计值中的任何差异或差异进行评论。6.确定雷诺数对升力、阻力和 1/4 弦俯仰力矩系数的影响。(绘制压力翼测量的升力和俯仰力矩系数,以及尾流测量的阻力系数与所有可用攻角的雷诺数的关系。)
