简介:表现出负血氧水平的大脑区域,依赖性脑血管反应性(BOLD-CVR)对二氧化碳(CO 2)的反应被认为遭受了完全耗尽的自动调节性脑血管储备的能力和表现出血管窃取现象。如果此假设是正确的,那么在基于电动机的BOLD FMRI研究中,血管窃取现象的存在应随后导致相等的FMRI信号响应(代谢增加而不会增加由于耗尽的储备能力而增加的脑血流),而其他功能性的脑组织则在其他功能性脑组织中。为了调查这一前提,这项研究的目的是进一步研究表现出负BOLD CVR的大脑区域中基于电动机的BOLD-FMRI信号反应。Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO 2 -calibrated motor task-based BOLD-fMRI study with a fingertapping para- digm and a subsequent BOLD-CVR study with a precisely controlled CO 2 -challenge during the same MRI ex- amination, were included.我们比较了双侧前后Gyri - i的BOLD-FMRI信号反应。 e。感兴趣的区域(ROI)与此ROI中的相应BOLD-CVR。使用对42个接受相同研究方案的健康个体的BOLD-FMRI任务研究的第二级组分析确定ROI。结果:BOLD-CVR的总体下降与ROI内BOLD-FMRI信号响应的降低有关。对于表现出阴性BOLD-CVR的患者,我们发现基于正电动机和负电动机的BOLD-FMRI信号反应。结论:我们表明,对CO 2的负CVR响应的存在与基于Motor的BOLD-FMRI信号反应有关,其中一些患者表现出更大的假定 - 负面BOLD-FMRI信号反应,而其他患者则表现出阳性的BOLD-FMRI信号反应。此发现可能表明
摘要本论文对电池操作策略对商业锂离子电池寿命的影响以及离网光伏(PV) - 故障系统的经济学的影响提供了全面而详细的分析。锂离子电池在向无化石社会的过渡中起着关键作用。与电动汽车相比,固定能量存储对电池的性能和寿命有不同的要求。尽管最佳电池设计对于实现高能量密度和更长的寿命至关重要,但操作在防止过早性能降解方面起着重要作用。了解被抑制的需求,地理位置和应用对系统生命周期成本的影响也可以实现最佳系统设计。在模拟模型中估算并实现了三个应用程序的负载曲线,以及三个位置的气象数据以及抑制需求(SD)效应。使用小时的充电状态(SOC)配置文件,使用具有不同截止电压和两个充电窗口(ΔSOC)的部分循环设计了四个电池操作策略。商业细胞用于实验测试。超过1000个周期后,进行了验尸表征。实验揭示了高SOC运行时过早降解的原因是正极电极阻抗上升的组合和在负电极处的锂库存损失,从而导致容量降低。使用基于物理的建模对细胞的阻抗光谱进行的研究表明,正极中颗粒之间的电导率损失。也会增加,而操作ΔSOC宽度也会增加,而系统的可靠性也会降低。我们将可靠性定义为电源损失。最后,优化成本和可靠性,表明最佳系统设计有利于用更宽的ΔSOC而不是电池寿命的电池操作策略。关键字:锂离子电池,老化,部分周期,DVA,EIS,NCA,固定能量系统,PV系统,农村电气化。
用晶体学方向(001)和晶格参数a = b = 0.3265 nm和c = 0.5212 nm表征了产生的ZnO 膜。Zno 1 - 薄膜表面上的纳米晶状体的特征大小范围从50 nm到200 nm。ZnO 1的晶格参数 - ssх纳米晶体的实验确定为Zno = 0.7598 nm。这项研究阐明了ZnO膜的晶格参数以及ZnO 1的几何尺寸,在胶片表面上在胶片表面上的纳米晶状体的几何尺寸。已经确定ZnO 1的晶体结构 - sх纳米晶体代表一个立方晶格,属于空间群f43m。已经确定,在γ-辐照5·10 6 rad之后,Zno 膜的电阻率降低至ρ=12,7Ω·CM,多数荷载流子(µ)的迁移率为0.18 cm 2 /v·S,而浓度增加了(N)的浓度(N)和相等的2.64•10 18 cM -10 18 cM -10 18 cM -10 18 cM -10 18 cM。对γ/n-Si异质结构的当前电压特性的研究在γ摄取之前和之后的剂量为5·10 6 rad的研究表明,电压对电压的依赖性遵守了指数定律,这与discection灭deptection deptetion deptetion deptetion deptetion deptetion deptetion depettion depettion depettion deptetion。确定,在γ-辐照的影响下,剂量为5·10 6 rad,p-zno >/n-Si异质结构在负电压下增加,并且由于单位网络级别的稳定性而在稳定性上观察到固定曲线和峰值的曲线,并且峰值在快速层面上的稳定性上是在稳定性上的。关键字:电影;超声喷雾热解;纳米晶体; γ辐射;晶体学取向;晶格参数;携带者;注射耗尽PAC:78.30.am
为了促进从化石到可再生能源的转移,需要存储以应对太阳,风能和波浪功率等技术的间歇性质。一种存储替代方案是基于电池的固定能量存储。有许多电池类型可供选择,但是镍金属氢化物(NIMH)是特别适合的类型。这些电池具有高的能量密度,一个较大的温度操作窗口,是大规模存储的安全替代方案。在本文中,研究了NIMH电池的行为,目的是开发动态电池模型,该模型能够复制电池电压和压力,也用于动态使用。这种模型可用于促进NIMH电池的开发,改进电池管理系统(BMS)中使用的算法,质量控制以及储能系统的尺寸。这些改进可以导致固定的能量存储,并具有更高的效率和更长的可用寿命。为了提高对电池功能的理解,对NIMH电池典型的两种行为进行了更深入的研究,并被认为对电池有很大的影响:开路电压(OCV)磁滞和电池气体相的行为。OCV磁滞会使建模复杂化,因为它会导致电池休息电压在一定程度上取决于到达那里所需的充电/排放路径。OCV磁滞对于所有电池都不明显,对于NIMH电池来说尤其突出。然后将氧气在负电极处重新组合到水中。NIMH电池中的气相是有效的,因为电解质是水性的,并且在操作过程中的电压窗口会导致正电极处的氧气演化。由于对负金属氢化物电极上氢平衡压力的依赖性和氢平衡压力的依赖性,气相中的氢量在周期内有所不同。分别开发了两个模型以研究这些行为。模型显示出良好的定性生殖能力。还使用结构分析方法研究了磁滞现象。在相同的电荷状态下的两个阳性电极材料样品之间的材料结构中发现了差异,但滞后状态不同。这些差异是
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [5, 6] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型均未重现所测量到的任何 h + 和 h − 量。这种不一致表明我们尚未完全理解引起涨落的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 中,一个可能的工具是质子间歇性,它应该在 CP 附近遵循幂律涨落。可以通过研究二阶阶矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px , py ) 空间中胞元数量的变化来检查(见参考文献 [7, 8, 9])。对于实验数据,必须用混合事件减去非临界背景。减法后,二阶阶矩 ∆ F 2 ( M ) 应根据 M >> 1 的幂律缩放,得到的临界指数 φ 2 与理论预测相当 [10]。图 3 显示了半中心 Ar + Sc 相互作用中 150 A GeV / c 的 ∆ F 2 ( M )。图左侧和右侧之间的差异是所考虑的统计数据。左侧显示 2018 年发布的结果 [11]。这些结果表明 ∆ F 2 为正值,可能与 CP 有关。右侧显示相同的结果,但统计数据更高(208k
为了比较不同尺寸系统中的涨落,应该使用强度量,即对系统体积不敏感的量。此类量通过除以测量分布的累积量 κ i(最高为四阶)得出,其中 i 是累积量的阶数。对于二阶、三阶和四阶累积量,强度量定义为:κ 2 /κ 1、κ 3 /κ 2 和 κ 4 /κ 2。图 1 显示了 150 / 158 A GeV / c 时净电荷三阶和四阶累积量比的系统尺寸依赖性。测量数据与 EPOS 1.99 模型 [5, 6] 的预测一致。对带负电和带正电强子的相同量对系统尺寸依赖性的更详细检查(图 2)表明系统尺寸依赖性非常不同。此外,EPOS 1.99 模型均未重现所测量到的任何 h + 和 h − 量。这种不一致表明我们尚未完全理解引起涨落的底层物理原理。因此,需要进行更详细的研究。在寻找 CP 中,一个可能的工具是质子间歇性,它应该在 CP 附近遵循幂律涨落。可以通过研究二阶阶矩 F 2 ( M ) 随胞元大小或等效地随中速质子 (px , py ) 空间中胞元数量的变化来检查(见参考文献 [7, 8, 9])。对于实验数据,必须用混合事件减去非临界背景。减法后,二阶阶矩 ∆ F 2 ( M ) 应根据 M >> 1 的幂律缩放,得到的临界指数 φ 2 与理论预测相当 [10]。图 3 显示了半中心 Ar + Sc 相互作用中 150 A GeV / c 的 ∆ F 2 ( M )。图左侧和右侧之间的差异是所考虑的统计数据。左侧显示 2018 年发布的结果 [11]。这些结果表明 ∆ F 2 为正值,可能与 CP 有关。右侧显示相同的结果,但统计数据更高(208k
化学物质和样品:目标分析物列表包括105种药物和3种替代物质内部标准。单个纯标准标准以制备甲醇中的库存溶液,从中校准标准(5-1000 ng/l)在milliq水中制备以进行半定量。的进水废水样品作为24小时复合材料。收集后,将1 L等分试样的复合废水转移到冷藏玻璃瓶中,并存储在-20°C下直至分析。样品制备:将100 mL废水样品以4000 rpm离心5分钟,并通过0.22 µm滤波器进行真空过滤。将30 ml等分试样的过滤废水施加了位替型内部标准,并使用Oasis HLB SPE墨盒提取(200 mg,6 cm 3,Waters,Waters,Milford,MA)。将每个墨盒用5 ml甲醇和5 ml的Milliq水预先加载,然后再加载样品,然后用真空干燥并用10 mL甲醇洗脱。蒸发干燥后,将残留物用50 µL甲醇重构进行LC-MS/MS分析。尖刺的Milliq水,以半定量检测限制(LOD)和提取回收率进行半定量评估。色谱法:使用现象Kinetex C18柱(100 x 2.1 mm,1.7 µm,p/n:00d-4475-an)在Sciex eotlc AC系统上进行LC分离。使用0.5 mL/min的流速,使用注射体积为5 µL,柱温度为45°C。所使用的LC条件如表1所示。表2显示了用于质谱仪的方法参数。质谱法:使用X500R QTOF系统以正面和负电喷雾电离模式进行分析。Swath DIA方法由16个可变窗户组成,覆盖M/Z 130–520的质量范围。
气候变化是一个紧迫的全球问题,可以通过使用电动汽车减少CO 2排放来部分解决。在这种情况下,高能和高功率密度电池至关重要。LINI 0.5 MN 1.5 O 4(LNMO)基于基于的单元在这方面吸引人,因为它满足了几种要求,但不幸的是受能力褪色的限制,尤其是在升高温度下。lnmo在〜4.7 V(vs. li + /li)下运行,其中传统的锂离子电池(LIB)电解质在热力学上不稳定。本文研究了LNMO细胞中的降解机制以及解决这些问题的各种实用策略。在第一部分中,开发了一种称为合成电荷的技术 - 伏安法(SCPV),以更好地了解某些常见电解质的氧化稳定性。第二部分着重于使用粘合剂的使用,这些粘合剂可能有可能在lnmo细胞中形成人造阴极 - 电解质相互作用。聚丙烯腈(PAN)通常被认为是氧化稳定的,但是在LNMO的工作电压下被证明会降解。研究了第二个聚合物(PAA)的第二个聚合物,用于较高的电极质量负荷,但与羧甲基纤维素(CMC)基准相比,高内部电阻导致初始放电能力较差。为了有效地减轻容量褪色,在第三部分的LNMO细胞中探索了三个不同的电解质。首先,使用了一种离子液体的电解质,1.2 M锂双(氟磺磺酰基)酰亚胺(LIFSI)在N-丙基N-甲基吡咯烷二(Fluorosulosulfonyl)Imide(Pyr 13 FSI)中被用于N-丙基-N-甲基吡咯烷二烯。X射线光电子光谱(XPS)分析表明,该电解质通过形成稳定的无机表面层来稳定电极,从而稳定电极。第二,对含硫烷的电解质的研究表明,尽管初始循环显示出较高的降解,但在电极上产生的钝化层仍能稳定循环。In a third study, tris(trimethylsilyl)phosphite (TMSPi) and lithium difluoro(oxalato)borate (LiDFOB) were investigated as electrolyte additives in a conventional electrolyte, and 1 wt.% and 2 wt.% of the additives, respectively, showed improved electrochemical performance in LNMO-graphite full cells, highlighting the role of these在正极和负电极处启用相间层的添加剂。总的来说,这些研究提供了有关界面化学对于LNMO细胞稳定运行的重要性的见解,并确定了进一步量身定制的策略。
b“ libs [18]以及钠离子电池中的dess。[19]先前,由钠二(三氟甲磺酰基)酰亚胺(NATFSI)和N-甲基乙酰酰胺(NMA)组成的DES组成的Eutectic摩尔比1:6,这在这项研究中也被证明是可行的电子,用于多个可行的电子电脑,用于多聚体。 (2,2,6,6-四甲基哌啶-1-基 - 氧基丙烯酸酯)(PTMA)电极。[20]但是,据我们所知,这些溶剂尚未与聚合物电极配对,用于构建全有机储能系统。对基于有机电池的研究大约在45年前开始,[21,22],但很快就停止了。[23]发现高容量聚合物(例如PTMA)[24]与相对较高的放电电压配对,再次激发了对有机电极材料的兴趣,从而产生了各种储能应用。[25 \ XE2 \ x80 \ x9331]今天,PTMA是最突出的基于自由基的氧化还原活性聚合物之一。它用作阳性电极,含有稳定的硝氧基自由基,称为2,2,6,6-四甲基哌啶基N-氧基(tempo)。这个自由基具有出色的电化学特性和所需的稳定性。[32] PTMA首先在锂有机电池中使用,平均排放电压为3.5 V,排放能力为77 MAHG 1。[24]本研究中全有机全电池的负电极是基于VIologen的聚合物,该聚合物在其原始状态下包含双阳性电荷的阳离子,在进行了两个单电子传输步骤后,该阳离子在其原始状态下,将其简化为中性物种。[5]在这种情况下,我们使用了交联的聚合物聚(N - (4-乙烯基苯甲酰苯)-N'-Methylviologen)(X-PVBV 2 +),以阻止溶剂中的溶解。[33] PTMA作为正和X-PVBV 2 +作为负电极的组合会导致在阴离子摇椅构型中运行的全有机电池,这是一种可以用有机电极材料实现的稀有细胞类型。[34]与阳离子摇摆椅或双离子电池相比,仅将阴离子用作电荷载体。此类阴离子摇摆椅全有机细胞的其他报道也将基于Viologen的化合物作为负电性化合物,均以水性[35 \ xe2 \ x80 \ x9338]和非含电解质的水性和非高性电解质,[39 \ xe2 \ xe2 \ x80 \ x80 \ x93341]
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了提示。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的衰减机制。衰减可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子电路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
