5 TS Böscke、J Müller、D Bräuhaus、U Schröder 和 U Böttger,《应用物理快报》99 (10), 102903 (2011)。 6 Uwe Schroeder、S Mueller、Johannes Mueller、Ekatarina Yurchuk、D Martin、Christoph Adelmann、Till Schloesser、Ralf van Bentum 和 Thomas Mikolajick,ECS 固体科学与技术杂志 2 (4),N69 (2013)。 7 H Alex Hsain、Younghwan Lee、Gregory Parsons 和 Jacob L Jones,《应用物理快报》116 (19)、192901 (2020)。 8 Johannes Muller、Tim S Boscke、Uwe Schroder、Stefan Mueller、Dennis Brauhaus、Ulrich Bottger、Lothar Frey 和 Thomas Mikolajick,《纳米快报》12 (8),4318 (2012)。9 Yuh-Chen Lin、Felicia McGuire 和 Aaron D Franklin,《真空科学与技术 B 期刊》,《纳米技术和微电子学:材料、加工、测量和现象》36 (1),011204 (2018)。10 Justin C Wong 和 Sayeef Salahuddin,《IEEE 会议纪要》107 (1),49 (2018)。 11 C Zacharaki、P Tsipas、S Chaitoglou、EK Evangelou、CM Istrate、L Pintilie 和 A Dimoulas,《应用物理快报》116 (18), 182904 (2020)。 12 Zoran Krivokapic、U Rana、R Galatage、A Razavieh、A Aziz、J Liu、J Shi、HJ Kim、R Sporer 和 C Serrao,在 2017 年 IEEE 国际电子器件会议 (IEDM) 上发表,2017 年(未发表)。 13 Shen-Yang Lee、Han-Wei Chen、Chiuan-Huei Shen、Po-Yi Kuo、Chun-Chih Chung、Yu-En Huang、Hsin-Yu Chen 和 Tien-Sheng Chao,IEEE 电子器件快报 40 (11), 1708 (2019)。 14 Sujay B Desai、Surabhi R Madhvapathy、Angada B Sachid、Juan Pablo Llinas、Qingxiao Wang、Geun Ho Ahn、Gregory Pitner、Moon J Kim、Jeffrey Bokor 和 Chenming Hu,Science 354 (6308), 99 (2016)。15 Amirhasan Nourbakhsh、Ahmad Zubair、Redwan N Sajjad、Amir Tavakkoli KG、Wei Chen、Shiang Fang、Xi Ling、Jing Kong、Mildred S Dresselhaus 和 Efthimios Kaxiras,Nano letters 16 (12), 7798 (2016)。16 Felicia A McGuire、Zhihui Cheng、Katherine Price 和 Aaron D Franklin,Applied Physics Letters 109 (9), 093101 (2016)。 17 Felicia A McGuire、Yuh-Chen Lin、Katherine Price、G Bruce Rayner、Sourabh Khandelwal、Sayeef Salahuddin 和 Aaron D Franklin,《Nano Letters》17 (8),4801 (2017)。18 Yuh-Chen Lin、Felicia McGuire、Steven Noyce、Nicholas Williams、Zhihui Cheng、Joseph Andrews 和 Aaron D Franklin,《IEEE 电子设备学会杂志》7,645 (2019)。19 Mengwei Si、Chun-Jung Su、Chunsheng Jiang、Nathan J Conrad、Hong Zhou、Kerry D Maize、Gang Qiu、Chien-Ting Wu、Ali Shakouri 和 Muhammad A Alam,《自然纳米技术》13 (1),24 (2018)。 20 Amirhasan Nourbakhsh、Ahmad Zubair、Sameer Joglekar、Mildred Dresselhaus 和 Tomás Palacios,纳米尺度 9 (18), 6122 (2017)。 21 Girish Pahwa、Amit Agarwal 和 Yogesh Singh Chauhan,IEEE Transactions on Electron Devices 65 (11), 5130 (2018)。 22 Daewoong Kwon、Korok Chatterjee、Ava J Tan、Ajay K Yadav、Hong Zhou、Angada B Sachid、Roberto Dos Reis、Chenming Hu 和 Sayeef Salahuddin,IEEE 电子设备快报 39 (2)、300 (2017)。 23 Daewoong Kwon、Suraj Cheema、Nirmaan Shanker、Korok Chatterjee、Yu-Hung Liao、Ava J Tan、Chenming Hu 和 Sayeef Salahuddin,IEEE Electron Device Letters 40(6),993 (2019)。 24 Junichi Hattori、Koichi Fukuda、Tsutomu Ikegami、Hiroyuki Ota、Shinji Migita、Hidehiro Asai 和 Akira Toriumi,《日本应用物理学杂志》57(4S),04FD07 (2018)。
将铁电负电容 (NC) 集成到场效应晶体管 (FET) 中有望突破被称为玻尔兹曼暴政的功耗基本限制。然而,在非瞬态非滞后状态下实现稳定的静态负电容仍然是一项艰巨的任务。问题源于缺乏对如何利用由于域状态出现而产生的 NC 的根本起源来实现 NC FET 的理解。在这里,我们提出了一种基于铁电域的场效应晶体管的巧妙设计,具有稳定的可逆静态负电容。使用铁电电容器的电介质涂层可以实现负电容的可调性,从而极大地提高了场效应晶体管的性能。
摘要在这里,我们研究了PGP-SELBOX NCFET(在负电容FET中有选择性掩埋的氧化物上的部分接地平面)对FDSOI的负电容的影响。将铁电层放置在PGP-Selbox NCFET的栅极堆栈中,以产生负电容现象。铁电(Fe)材料与介电材料相似,但在其极化特性方面存在差异。fe-HFO 2由于其足够的极化速率具有高介电能力和更好的可靠性,因此将其用作铁电材料。分析了铁电材料参数的影响,例如强制场(E C)和恢复极化(P R)对NCFET的电容匹配的影响。模拟结果表明,R PE因子是P R与E C的比率,与更好的电容匹配密切相关。另外,还探索了铁电层厚度的变化对平均亚阈值摇摆(SS)的变化。还分析了PGP-Selbox NCFET的短通道效应(V Th rolo虫和DIBL)与铁电(T FE)的厚度之间的关系。模拟结果清楚地表明,PGP-SELBOX NCFET的SCES减少了,而I OFF fdsoi NCFET上的I OFF I OFF IN I ON IN I ON IN CES。对于拟议设备的铁罗 - 电动参数的优化值,在T Fe = 5nm时发现为50 mV/十年,比FDSOI NCFET(56 mV/十年)少。
摘要 本文提出了一种用于改善采样线性度的新型自举开关。该技术通过引入负电压自举电容来降低关键信号节点的寄生电容,从而提高其线性度。采用0.18 µ m互补金属氧化物半导体技术对所提电路进行仿真,其寄生电容比传统结构大约降低30%。在轨到轨输入情况下,在50 MHz采样率下,采用1.2 V电源供电时,所提开关实现了83.3 dB的信噪比 (SNDR) 和82.3 dB的无杂散动态范围 (SFDR)。与传统自举开关相比,所提自举开关的SFDR和SNDR分别提高了11.7和12.7 dB。关键词:自举开关、线性、低电压 分类:集成电路(存储器、逻辑、模拟、射频、传感器)
最初发生(在≈297K时发生。在较低的温度(≈255k [1])下,原始的高对称性偏置 - 正直态被恢复。与此重入相变相关的对称性在冷却时不可能增加。一些观察结果表明,这会在热容量中产生局部倾角,[1,2]在降低温度时暂停熵的降低。[1]奇怪的对称性转化也发生在通量生长的钛酸钡晶体中,在该晶体中,高度有序的“ Forsbergh模式”可以首先出现,然后随后逐渐消失,因为温度单调变化。[3,4]最近,人们认为加热会导致高元元迷宫铁电域模式,以使位于较低的对称条纹阵列:一种效果分类为“反向过渡”。[5]清楚地,对称变化偶尔会以与通常所见的相反意义发生。虽然基本的热力学定律没有破坏,但这种情况是不明显的,逮捕的,值得一提的。[6]
b Klghei环境与能源化学,生物无机和合成化学主要实验室的Moe,化学与化学工程学院,Sun Yat-Sen University,Guangzhou 510275,P。R. R. Chine。电子邮件:luxh6@mail.sysu.edu.cn;电话:+86 20 84112245电子邮件:luxh6@mail.sysu.edu.cn;电话:+86 20 84112245
推导了采用负电子亲和力 NEA 金刚石发射极电极的真空热电子能量转换装置 TEC 的空间电荷限制输出电流模式的理论。该理论通过假设电子表现为无碰撞气体并自洽地求解 Vlaslov 方程和泊松方程而发展。讨论了该理论的特殊情况。执行计算以在各种条件下模拟具有氮掺杂金刚石发射极材料的 TEC。结果表明,NEA 材料在输出功率和效率方面优于类似的正电子亲和力材料,因为 NEA 降低了发射极的静电边界条件,从而减轻了负空间电荷效应。© 2009 美国真空学会。DOI:10.1116/1.3125282
宽带隙半导体有可能表现出负电子亲和势 (NEA)。这些材料可能是冷阴极电子发射器的关键元素,可用于平板显示器、高频放大器和真空微电子等应用。结果表明,表面条件对于获得负电子亲和势至关重要。在本文中,角度分辨紫外光发射光谱 (ARUPS) 用于探索金刚石和 AlGaN 表面的影响。紫外光发射在表征电子发射方面的价值在于该技术强调了发射过程的影响。为了充分表征电子发射特性,还需要采用其他测量方法,例如场发射的距离依赖性和二次电子发射。最近,这些测量方法已用于比较 CVD 金刚石膜的特性。[l] 半导体的电子亲和势定义为将电子从导带最小值移到距离半导体宏观较远的距离(即远离镜像电荷效应)所需的能量。在表面,该能量可以示意性地显示为真空能级与导带最小值之间的差异。电子亲和力通常不依赖于半导体的费米能级。因此,虽然掺杂可以改变半导体中的费米能级,并且功函数会相应改变,但电子亲和力不受以下因素的影响