硬碳是一种有希望的负电极材料,用于可充电钠离子电池,因为它们的前体准备就绪且可逆的电荷存储。驱动硬碳和随后的电化学性能的反应机制严格与这些材料电压填充中观察到的特征坡度和高原区域有关。这项工作表明,电子顺磁共振(EPR)光谱是一种强大而快速的诊断工具,可预测硬碳材料中gal-VanoStatic测试期间在坡度和高原区域中存储的电荷程度。EPR线形模拟和温度依赖性测量有助于分离在不同温度下合成的机械化学修饰的硬碳材料中旋转的性质。这证明了结构模构和电化学曲线中的电化学特征之间的关系,以获取有关其钠储存机制的信息。此外,通过现场EPR研究,我们研究了这些EPR信号在不同电荷状态下的演变,以进一步阐明这些碳中的存储机制。最后,我们讨论了研究的硬碳样本的EPR光谱数据与它们相应的充电存储机制之间的相互关系。
钠离子电池(SIBS)最近被宣布为领先的“锂后”能量存储技术。这是因为SIBS与锂离子电池共享相似的性能指标,而钠则是10 0 0 0 0 0倍的含量。为了了解SIBS的电化学特征并改善了当今的设计,基于物理的模型是必要的。在此,第一次引入了基于物理学的伪两维(P2D)模型。P2D SIB模型分别基于N A 3 V 2(P O 4)2 F 3(NVPF)和硬碳(HC)作为正和负电极。NVPF和HC电极中的电荷转移通过浓度依赖性扩散系数和动力学速率常数描述。模型的参数化基于实验数据和遗传算法优化。表明该模型在预测全细胞HC // NVPF SIBS的排放纤维方面非常准确。此外,可以从施加电流处的模型获得内部电池状态,例如单个电极电池和浓度。在本文中均未阐明电极和电解质的几个关键挑战,并突出显示了提高SIB性能的有用设计注意事项。©2021作者。由Elsevier Ltd.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
在记录中,锂电池由负电极(阳极),正电极(阴极)和电解质组成。这三个元素插入水密聚合物包膜或细胞中。阳极通常由石墨组成。阴极由Lithié过渡金属氧化物组成。主要遇到的电池是LFP(锂,铁,磷酸盐)电池或NMC(锂,镍,锰,钴)电池。电解质主要由氟化锂盐(通常是锂的六氟磷酸盐)和有机碳酸盐型溶剂组成。在热失控或火灾中,电池中存在的元素及其分解产物可以在发射的烟雾中,以颗粒或气体的形式找到。可用的研究[1至3],很少有人在这个主题上,表明烟雾的复杂组成取决于许多参数。将干预电池的组成,其大小,负载,炎症,气体是否不燃烧,其他元素的燃烧(塑料,电缆等)。在开放或封闭空间中的事件过程也应考虑在内。根据研究,以不同浓度发现的气体和颗粒主要包括在没有燃烧的情况下(释放无火烟),有机碳酸盐(碳酸盐
Zeon Corporation (Zeon; head office: Chiyoda-ku, Tokyo; President and CEO: Tetsuya Toyoshima), via its subsidiary Zeon Chemicals L.P. (Zeon Chemicals; head office: Louisville, KY USA; CEO: Michael Recchio) has decided to begin preparations for the establishment of a new production line for Li-ion Battery Binders at its Texas Plant (Pasadena, TX USA).Zeon预计新成立的设施将在2026年实施运营。Zeon的锂离子电池粘合剂由阳极,阴极,功能层(用于分离器涂层)以及用于锂离子电池电池构建的密封剂粘合剂和材料组成。Zeon自1995年以来一直是锂离子电池市场的电池粘合剂材料的主导地位。自那时以来,Zeon已发展了市场领先的粘合剂,包括其旗舰sbr sbr粘结剂的负电极。Zeon拥有与锂离子电池有关的广泛的知识产权组合。预计锂离子电池市场可以在北美和欧洲的快速增长,每种电池市场预计将达到1000 GWH的细胞生产能力(来源:基准矿物质)。Zeon的新生产线将使局部的西半球生产能够为这些不断增长的市场提供服务。除了针对锂离子电池粘合剂的新生产线外,Zeon目前还在其德克萨斯州工厂生产Zetpol®氢化氮橡胶(“ HNBR”)。
摘要:与传统的液态电动电池相比,固态锂金属电池提供了较高的能量密度,更长的寿命和增强的安全性。他们的开发有可能彻底改变电池技术,包括创建具有扩展范围的电动汽车和较小的效率便携式设备。使用金属锂,因为负电极允许使用无li的阳性电极材料,扩大了阴极选择范围并增加了固态电池设计选项的多样性。在这篇综述中,我们介绍了用转换型阴极配置固态锂电池的最新发展,由于缺乏活性锂,它们无法与常规石墨或晚期硅阳极配对。电极和细胞配置方面的最新进展已导致使用沙尔氏粉,沙甲质化和卤化物阴极的固态电池的显着改善,包括提高的能量密度,更好的速率能力,更长的循环寿命以及其他显着的好处。为了充分利用固态电池中锂金属阳极的好处,需要大容量转换 - 类型的阴极。虽然在优化固态电解质与转换型阴极之间的界面方面仍然存在挑战,但该研究领域为改进的电池系统提供了重要的机会,并需要继续努力克服这些挑战。
准确的电池模型对于电池管理系统(BMS)应用至关重要。但是,现有模型要么不描述电池物理学,要么在实用应用上太密集了。本文提出了一个非线性等效电路模型,具有不同的使用动力学(NLECM-DI Q),该模型在现象学上描述了主要的电化学行为,例如欧姆,电荷转移动力学和固相动力学和固相。采用多键方法来确定高频动力学的元素,以及优化的分布式SOC依赖性分散分歧模型模型块被优化以说明长时间的动态。模型识别程序是在三电极实验细胞上进行的,因此为每个电极开发了NLECM-DI效率,以获取完整的电池电压。结果表明,与常规的ECM相比,NLECM-DI将电压均方根误差(RMSE)降低了49.6%,并且在长时间放电中具有与NEDC驾驶周期中参数化的SPME相当的精度。此外,在不同电流下,负电极在不同的电极下的不同特性的变化被确定为电池模型的大型低范围误差的主要原因。此外,分散过程被确定为长时间放电中的主要电压损耗,并且欧姆电压损耗被确定为NEDC驱动器下的主要动态。
多功能结构电池对各种高强度和轻量级应用都具有很高的兴趣。结构电池通常使用原始的碳纤维作为负电极,功能化的碳纤维作为正电极,以及机械强大的锂离子运输电解质。然而,基于碳纤维的阳性电极的电化学循环仍限于液体电解质的测试,该测试不允许以真实的方式引入多功能性。为了克服这些局限性,开发了带有结构电池电解质(SBE)的结构电池。这种方法可提供无质量的能源存储。电极是使用经济友好,丰富,廉价和无毒的铁基材料(如Olivine Lifepo 4)制造的。氧化石墨烯以其高表面积和电导率而闻名,以增强离子传输机制。此外,固化吸尘器注入的固体电解质以增强碳纤维的机械强度,并为锂离子迁移提供了介质。电泳沉积被选为绿色过程,以制造具有均匀质量负荷的结构阳性电极。可以在C/20时达到112 mAh g-1的特定能力,从而使Li-ion在SBE的存在下平稳运输。阳性电极的模量超过80 GPa。在各种质量载荷中都证明了结构性电池阳性的半细胞,从而为消费技术,电动汽车和航空航天部门的多种应用而量身定制它们。
1。引言由于锂离子电池的能量密度比其他二级电池更高,因此可以使其更小,更轻。这使他们能够迅速传播为移动设备(例如笔记本电脑和蜂窝电话)的电源。对锂离子电池的需求不断地不断增长,近年来,使用二级电池的车辆电力已成为实现低碳社会的全球趋势。此外,由于使用有机溶剂作为电解质的常规液态细胞是可亮的,因此在日本和世界其他地区,正在积极追求使用固体电解质的安全,全稳态细胞的发展。在这种情况下,许多人期望锂离子电池的性能进一步改善,并更长的寿命和更好的安全性。X射线衍射(XRD)被认为是评估锂离子电池改善性能所需的有效分析技术之一。要检查合成电池材料的结晶和相位ID分析,经常使用容易用于研究的实验室尺度X射线衍射仪。另一方面,在充电和放电过程中,在高强度X射线可用的同步基因设备上经常进行Operando(或原位)测量正和负电极材料晶体结构的变化(1) - (3)。最近,由于X射线源,光学元素和检测器的性能提高,即使实验室尺度X射线衍射仪,Operando的测量也已成为可能。本文介绍了使用SmartLab表征锂离子电池材料的示例。
铅酸电池是最古老的电化学存储系统之一,在各种途径中仍然可以广泛应用,从汽车电池到网格存储。电池化学既简单明了),在放电期间,通过食用硫酸(用作电解质),从金属铅(在负电极(PB)上)和二氧化铅(在阳性电极(PBO 2)上)产生硫酸铅(PBSO 4)。该电池的主要优点是其低成本,99%的有效回收,原材料的丰度,相对安全性,低温性能和高特异性功率。但是,许多更新的应用(例如E- Rickshaw,轻度混合体和太阳能PV应用程序)需要铅电池以高速率和部分充电状态(PSOC)caccip cyclities cyclities cycling cycling。在电荷运行过程中,主要问题称为负板硫酸盐,因为这些工作条件允许更容易生成大铅硫酸盐晶体。较大的晶体比其体积相对较低,并且在电池充电期间更难减少。这导致其容量和电池过早故障的下降。这种现象主要发生在负板上,因为具有相对较高比表面积的正板不容易硫化。碳在负板中的作用至关重要,尤其是在负电荷状态下运行的电池,NAM中的碳碳的电动表面积增加了电极的电活性表面积,从而提高了NAM的固定性固定性和固定性的固定性,并提高了NOM的固定性。
摘要:电动汽车(EV)用户的驾驶和充电行为表现出很大的变化,这显着影响了电池降解速率及其根本原因。EV电池组在第一人寿退休后经历了二人应用,并在重新部署之前进行了SOH测量。但是,降解根本原因对二人表现的影响仍然未知。因此,问题仍然是在重新部署之前是否有必要拥有更简单的健康状态(SOH)。本文介绍了实验数据来调查这一点。作为实验的一部分,使用代表性的二人占空比循环循环一组约80%SOH的细胞,代表退休的EV电池。细胞具有相似的根本原因在第一人生中(100–80%SOH)在第二人生中与相同的占空比循环后,在第二人生中表现出相同的降解率。当第一人生中降解的根本原因不同时,第二人生中的降解率可能不会相同。这些发现表明,细胞的第一寿命降解的根本原因会影响其在第二人生中的降解方式。验尸分析(照相和SEM图像)揭示了负电极的相似物理状况,这些物理状态在其第二个生命周期中具有相似的降解速率。这表明,具有相似初世的细胞和降解的根本原因确实在第二人生中经历了相似的生命。至关重要的是考虑到重新部署之前的细胞降解的根本原因。实验结果以及随后的死后分析表明,仅依靠SOH评估是不够的。