图 3-1 显示了当前 WTS 配置的总体布置和特性。它设计用于年平均风速为 14 英里/小时(30 英尺处测得)(轮毂高度为 20 英里/小时)的场地。当轮毂高度(200 英尺)的风速超过 14 英里/小时时,系统会发电。当风速为 27.5 英里/小时或更高时(轮毂高度),系统会产生 2500 千瓦的额定功率。当风速超过 45 英里/小时(轮毂高度)时,系统会关闭以避免高运行负荷情况。在平均风速为 14 英里/小时的场地,年能量输出接近 1000 万千瓦时。这个能量输出加上估计的第 100 个生产单元的交钥匙成本 1,720,000 美元(以 1977 年的美元计算),预计母线的电力成本为 3.3 吨/千瓦时。在运行期间,风力涡轮机通过标准输电线与公用电网相连。
摘要 目的:本文旨在全面回顾眼动追踪测量方法,并讨论眼动追踪方法在航空领域的不同应用领域。 背景:飞行员的心理生理测量(例如眼动追踪)可用于检测疲劳或高工作负荷情况、研究晕动病和缺氧,或评估显示改进和专业知识。 方法:我们回顾了眼动追踪对飞行员的用途,并包括发表在航空期刊上的眼动追踪研究,既有历史的也有当代的。我们纳入了 79 篇论文,并将结果分为以下三个类别:人类表现、飞机设计、健康和影响表现的生理因素。然后,我们总结了每个类别中眼动追踪的不同用途,并重点介绍了在每个领域有用的指标。我们的评论是对 Ziv (2016) 的评论的补充。 结果:基于这些分析,我们提出了眼动追踪测量的有用应用领域。眼动追踪可以通过检测疲劳或表现下降等来有效预防错误或伤害。在模拟或真实飞行中以适当的方式应用它可以帮助确保人机系统的最佳运行。结论:进一步的航空心理学和航空航天医学研究将受益于眼球运动的测量。
大型电力消费者,尤其是科技行业的公司,正在通过采购清洁能源来实施几种不同的策略以减少其范围 2 排放。我们计算了四种不同的清洁能源采购策略的成本和有效性:全美年度能源匹配、本地年度能源匹配、每小时能源匹配和碳匹配。碳匹配需要平衡电力负荷的排放量与清洁能源采购的避免排放量(以位置边际排放率计算),而能源匹配则需要在年度或每小时时间尺度上平衡负荷和清洁能源发电。我们评估了这些策略,这些策略由位于美国五个不同地区、监管结构各异的两种不同负荷曲线的大型电力消费者实施。我们发现碳匹配是最具成本效益的采购策略,成本在 4.7 美元到 7.6 美元/兆瓦时之间,碳减排成本最低,为 13 美元/吨二氧化碳。我们发现年度能源匹配成本从 10 美元/兆瓦时到 32 美元/兆瓦时不等,并且它不能保证碳中和。每小时能源匹配成本较高,从 68 美元/兆瓦时到 181 美元/兆瓦时不等,具体取决于地区和负荷情况,这是碳减排成本效益最低的策略,减排成本从 77 美元/吨二氧化碳到 161 美元/吨二氧化碳不等。这些结果表明,针对当前可再生能源渗透率低、边际排放率高的地区进行清洁能源投资是个体参与者减少范围 2 碳排放并实现碳中和的最有效方法。
自航空业诞生以来,驾驶舱操作经历了重大变化。由于航空电子设备和通信技术的改进,客机的发展导致机组人员数量逐渐减少。随着飞行工程师、领航员和无线电操作员被新的玻璃驾驶舱功能所取代,机上人员从 5 人减少到 3 人,然后又减少到 2 人。到目前为止,尽管系统可靠性不断提高,但这一数字尚未减少。事实上,商业航空业最近才开始对单飞行员操作 (SPO) 产生兴趣。目标是评估可以将副驾驶员职责重新分配给可靠和自动化子系统和/或地面支持操作员的强大解决方案。对 SPO 的这种吸引力主要源于现代航空业预计将面临的挑战,包括预计的合格飞行员短缺 51 和不断增加的 27 空中交通(图 1)。考虑到这一点,一些公司正在为向 SPO 过渡做准备,SPO 有可能在长期内节省大量成本 4。事实上,到目前为止,许多专家都同意将这一变化视为一种经济效益。例如,瑞士联合银行 (UBS) 进行的一项研究表明,通过在商用航空中引入 SPO,全球航空公司将在长期内节省 150 亿美元 38 的运营成本。然而,尽管有这些潜在的好处,但关于安全性和人为因素的争论仍在继续,SPO 的技术、操作和商业可行性尚未得到证实。相反,所谓的扩展最低机组运营 (eMCO) 概念正在经历一个不那么麻烦的开发过程,它基于对现有设计的改进,其中 SPO 将仅限于飞行的巡航阶段(例如长途、跨大陆航班)。由于缺乏冗余副驾驶员交叉核对功能,单飞行员操作面临的主要挑战之一将是评估和预测单飞行员的任何高工作负荷情况,以便保持其对任务计划的心理状态并正确处理突然失能事件。此外,由于自动化将接管副驾驶员的一些任务,因此有必要设计一个合适的人机界面 (HMI),以适应操作员的心理状态。其他挑战通常与操作、通信程序和流程以及飞行员/机组人员的培训要求和系统完整性有关。向单飞行员操作的过渡还将需要彻底修改认证范式,考虑到从审议/反应系统向可根据操作条件扩展的混合自主系统的转变。目前,人们正在付出大量努力来评估某些新型飞行辅助系统的运行潜力,这些系统可以作为满足 SPO 提出的新要求的一种手段。学术界和工业界目前正在研究所谓的数字飞行助手 (DFA) 操作概念,以降低驾驶舱的复杂性并在紧张的决策过程中为飞行员提供支持,包括可能导致失能的决策过程。该系统通常旨在执行任务或基于传感器的飞行员认知状态实时评估,以提供特定警报,防止混乱或失去意识。