钒氧化还原液流电池 (VRFB) 电解质在高温 (> 40°C) 下热稳定性不足仍然是该技术开发和商业化的挑战,否则该技术将为间歇性可再生能源的长期储存带来广泛的技术优势。本文提出了一种组合添加剂的新概念,它显著提高了电池的热稳定性,使其能够在迄今为止测试的最高温度 (50°C) 下安全运行。这是通过结合两种化学性质不同的添加剂——无机磷酸铵和聚乙烯吡咯烷酮 (PVP) 表面活性剂实现的,它们共同减缓溶液中氧钒物质的质子化和聚集,从而显着抑制有害沉淀物的形成。具体来说,在 50°C 的静态条件下,沉淀率降低了近 75%。这一改进反映在完整的 VRFB 设备在 50°C 下连续运行超过 300 小时的稳健运行中,在 100 mA cm-2 电流密度下实现了令人印象深刻的 83% 的电压效率,并且在电极/流动框架或电解质槽中均未检测到沉淀。
摘要:分子电子旋转是可伸缩和可调量的候选者,但经常患有空气敏感性或其他不良分解途径。热热,明显的自旋 - 晶格松弛和核自旋 - 介导的脱碳限制了它们的应用。尽管新分子电子旋转量子候选物的合成的明显进步导致了相干寿命的提高,但一个关键问题是,是否可以在与量子传感器相关的条件下保持连贯性,以实现溶液中的溶液和在室温下以在生物逻辑系统中传感。在这里,我们报告了一个基于四脂醛的量子量子候选者,并以旋转为中心于无核旋转的桥接配体。在环境温度和富含核自旋的质子化溶液中,这种独特的空气和水稳定的支架在数百个纳秒中的长期旋转时间为数百个纳秒。这些结果将该系统区分为有希望的可以开发新的室温,溶液 - 量子量子传感技术,并暗示了莫内斯电子旋转量子量子,可以成为这些量化的理想候选者。
扑热息痛✓PKA(酸解离常数)ː–•弱酸和弱碱基的水溶性由化合物的PKA和培养基的pH值控制。•pH和PKA•具有pH或PKA值后,您就会了解有关溶液的某些知识及其与其他溶液的比较:•pH越低,氢离子的浓度越高[H +]。•PKA越低,酸越强,捐赠质子的能力就越大。•pH取决于溶液的浓度。这很重要,因为它意味着弱酸实际上可以比稀释的强酸要低。例如,浓醋(乙酸,弱酸)的pH值比稀释液(浓酸)的pH值低。•另一方面,每种类型的分子的PKA值是恒定的。它不受浓度影响。•即使是化学物质,通常被认为是碱也可以具有PKA值,因为术语“酸”和“碱”只是指物种是否会放弃质子(酸)或去除它们(碱)。例如,如果您具有13个PKA的基础y,它将接受质子并形成YH,但是当pH超过13时,YH将被质子化并变为Y。由于y在pH值大于中性水的pH值(7)的pH值中去除质子,因此被认为是碱。
自组装单分子膜 (SAM) 广泛应用于有机场效应晶体管,以改变栅极氧化物的表面能、表面粗糙度、薄膜生长动力学和电表面电位,从而控制器件的工作电压。本研究使用 n 型多晶小分子半导体材料 N,N′-二辛基-3,4,9,10-苝二甲酰亚胺 (PTCDI-C8),比较了氨基官能化的 SAM 分子与纯烷基硅烷 SAMS 对有机场效应晶体管电性能的影响。为了了解氨基对电子的影响,系统地研究了含氨基官能团的数量和 SAM 分子长度的影响。虽然之前已经研究过氨基官能化的 SAM 材料,但这项研究首次能够揭示用极性氨基硅烷材料处理栅极氧化物时发生的掺杂效应的性质。通过对分子水平上的界面进行全面的理论研究,我们发现观察到的阈值电压偏移是由自由电荷引起的,这些自由电荷被 PTCDI-C8 吸引,并在那里被质子化的氨基硅烷稳定下来。这种吸引力和电压偏移可以通过改变氨基硅烷中性端链的长度来系统地调整。
然而,CO 2 分子的单碳(C 1 )性质和化学稳定性对碳 - 碳(C - C)键偶联反应造成了巨大障碍,从而限制了 CO 2 转化为 C 2+ 的效率。4 – 7 已证明,催化剂表面吸附的 CO 中间体(* CO)的充分覆盖对于二聚化和质子化形成 C 2+ 产物至关重要。4,8 – 10 到目前为止,可以促进* CO 覆盖和/或抑制 CO 逃逸的催化剂设计策略有望实现深度 CO 2 还原,以高选择性和效率生成有价值的 C 2+ 产品。在所有策略中,具有凹面的催化剂已表现出对反应中间体的非凡限制。 4,11,12例如,Cu 2 O 腔体通过对碳中间体进行空间约束,使 C 2+ 法拉第效率 (FE) 达到 75.2 ± 2.7%,4 而通过优化 Cu 2 O 空心多壳结构的约束效应,最大 C 2+ FE 达到 77.0 ± 0.3%。11遗憾的是,这些研究中报告的约束效应不足以在安培级电流密度下实现高 C 2+ 选择性,从而阻碍了它们的实际应用。此外,缺乏对结构 - 性能关系的理解,这阻碍了生产具有更高效电催化剂的精细设计。为了解决这些问题,有序多孔 Cu 2 O
动力学核极化(DNP)是一种强大的方法,它允许通过微波辐照电子Zeeman跃迁来传递电子极化,从而使几乎任何旋转核的核对任何旋转核的核两极化。在某些条件下,可以使用热混合(TM)模型以热力学术语描述DNP过程。不同的核物种可以通过与电子旋转的相互作用并达到共同的自旋温度间接交换能量。在质子(H)和氘(D)核之间可能发生这种“串扰”效应,并在脱离和重新偏振实验中发生。在这项工作中,我们将这种效应在实验中,使用质子化或剥离的tempol自由基作为偏振剂。对这些实验的分析基于普罗威尔托洛罗的方程式,可以提取相关的动力学参数,例如不同储层之间的能量传递速率以及非Zeman(NZ)电子储量的热容量,而Proton和Deuterium Reservoirs的热能可以基于其估计的表现。这些参数允许人们对杂核的行为(例如碳-13或磷-31)进行预测,但前提是它们的热容量可以忽略不计。最后,我们介绍了Propotorov动力学参数对Tempol浓度和H/D比的依赖性的实验研究,从而提供了对“隐藏”自旋的性质的洞察力,由于它们与自由基的接近,这些自旋的性质无法直接观察到。
摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
摘要:硫化物(RSSH)是内源产生的生物学上重要的反应性硫种类,保护关键的半胱氨酸残基免受不可逆转的氧化,并且在不同的酶促过程中是重要的中间体。尽管过分硫化物比硫醇对应物更强,但在特定环境中,硫化物也可以充当其中性,质子化形式的电力。此外,在两个硫原子上的硫化物都是亲电的,与硫醇酸盐的反应可以导致h 2 s释放,二硫化物形成或替代导致经硫化。尽管这些反应途径广泛接受,但控制硫化物是否通过H 2 S释放或转移硫化途径反应的特定特性仍然难以捉摸。在此,我们使用一种组合的计算方法和实验方法直接研究了硫化硫化物和硫醇之间的反应性以回答这些问题。使用DFT计算,我们证明了在硫化硫化物附近增加的空间散装或电子提取可以通过转分泌硫化途径分流过硫化物的反应性。从这些见解中构建,我们使用过硫化物供体和TME-AIM捕获剂来实验监测和测量从基于青霉素的硫硫胺到半胱氨酸基于硫醇的转移硫化,这是我们所知的最好的,这是对低分子重量之间的转移硫次的第一个直接观察。综上所述,这些合并的方法突出了纯硫化物的特性如何直接受到当地环境的影响,这对理解这些反应性物种的复杂化学生物学产生了重大影响。
通过活化的单体机制诱导聚合。光酸发生器(PAGS)46对光刻和微电子发育的e;但是,PAG介导的聚合化不是可逆的,仅提供对聚合物启动而不是链生长的时间控制。为了克服这一挑战并发展可逆的光acid,Boyer和De Alaniz独立使用了基于Merocyanine的催化剂。47,48然而,螺旋罗蛋白酶慢慢的热恢复为质子化的丙氨酸限制了这些系统中时间控制的程度。同样,Hecht和Liao都报道了可拍摄的ROP的催化剂,49,50,但在这些系统中也遇到了与催化效率和可逆性有关的局限性。在此基础上,可以通过外部刺激可逆地激活ROP的酸催化剂仍然是一个挑战。我们假设,可以通过设计可逆的,氧化还原控制的酸来实现对酸催化性的阳离子ROP的时间控制,该酸可以通过氧化状态的变化来改变其p k a。51,52特定的cally,通过将铁链接到酸性官能团53,54中,我们设想了一个系统,在该系统中,P k a会在氧化中从Fe(II)到Fe(II)降低,然后通过活化的单体机制启动ROP(图1)。重要的是,将铁金属物种还原回二茂铁将恢复分子的原始酸度并停用催化剂,可消除可逆的终止,从而对聚合进行时间控制。
在恒电位模式下,微米厚度的涂层在储存过程中会被破坏。这种类型的晶体水合物电解质不能被认为是通常意义上的水性电解质。其中电解合金的形成机理研究较少,应该与金属从水性复合溶液中电还原并同时析氢有着根本的不同。为了获得厚度为 1-10 毫米的涂层,水性电解质是最有希望的。使用各种复合成分的溶液 7-9 可以形成铼含量范围很广的合金,这意味着可以通过电镀获得各种各样的表面功能特性。如参考文献 2 和 10 所示,通过从 pH 为 3.5 的柠檬酸盐 (Cit) 电解质中电沉积可以获得铼含量为 45-65 at% 的高质量涂层。众所周知,电镀层的组成和性能取决于电化学活性复合物的组成,即直接在电极表面反应的离子的组成,这些离子在阴极的放电导致金属或合金的形成。电化学活性复合物的数量、浓度和组成又取决于溶液的pH值。在柠檬酸盐溶液中,考虑到在柠檬酸分子中取代四个质子的理论可能性,在低pH值下,可能同时存在几种质子化的柠檬酸钴11以及铼的柠檬酸复合物12。在pH值为3.5时,柠檬酸钴中的最高浓度为