关键词 路径规划,粒子群优化,广义 PSO,光学避障,无人机,无人机编队。摘要 本文研究了多旋翼无人机(UAV)在编队形状中协作检查周围表面的路径规划技术问题。我们首先将问题描述为在复杂空间中规划编队质心路径的联合目标成本。然后提出了一种路径规划算法,称为广义粒子群优化算法,用于在避开障碍物并确保飞行任务要求的同时构建最佳的可飞行路径。然后结合路径开发方案为每架无人机生成相关路径以保持其在编队配置中的位置。进行了仿真、比较和实验以验证所提出的方法。结果表明,使用 GEPSO 的路径规划算法是可行的。缩写
摘要:中国拟建的超级金牛座神灯装置(STCF)是新一代正负电子对撞机,质心能量为2~7 GeV,峰值亮度为0.5×1035cm−2s−1。开发了STCF离线软件(OSCAR),支持离线数据处理,包括探测器仿真、重建、刻度以及物理分析。针对STCF的具体要求,OSCAR基于HEP实验轻量级通用软件SNiPER框架进行设计和开发。除了常用的 Geant4 和 ROOT 软件外,OSCAR 还采用了 HEP 社区中一些最先进的软件包和工具,例如探测器描述工具包 (DD4hep)、普通旧数据 I / O (podio) 和英特尔线程构建模块 (TBB) 等。本文将介绍 OSCAR 的总体设计和一些实现细节,包括事件数据管理、基于 SNiPER 和 TBB 的并行数据处理以及基于 DD4hep 的几何管理系统。目前,OSCAR 已全面投入使用,以促进 STCF 探测器的概念设计和其物理潜力的研究。
摘要 — 由于量子计算的内置并行性,未来量子计算机在处理一些复杂的模糊逻辑计算方面具有未被开发的潜力。最近,在一种称为量子退火器的量子计算机上,引入了一种基于解决二次无约束二进制优化 (QUBO) 问题的模糊集的新表示和一些基本模糊逻辑运算符 (并集、交集、alpha 切割和最大值) 的实现。本文通过提出一种基于二进制二次模型 (BQM) 的量子退火机上的质心去模糊化的实现来扩展这项工作,但这次使用的是 Ising 模型。通过在量子计算机上实现基本操作和去模糊化,本文为在量子退火器等增强型设备上实现整个模糊推理引擎铺平了道路。索引术语 — 量子计算、模糊逻辑、模糊集。
相对论通过世界线将每个运动物体与一个固有时联系起来。然而在量子理论中,这种明确定义的轨迹是被禁止的。在介绍量子钟的一般特征之后,我们证明,在弱场、低速极限下,当运动状态为经典(即高斯)时,所有“良好”量子钟都会经历广义相对论所规定的时间膨胀。另一方面,对于非经典运动状态,我们发现量子干涉效应可能导致固有时与时钟测量的时间之间出现显著差异。这种差异的普遍性意味着它不仅仅是一个系统误差,而是对固有时本身的量子修改。我们还展示了时钟的离域性如何导致其测量时间的不确定性增大——这是时钟时间与其质心自由度之间不可避免的纠缠的结果。我们展示了如何通过在读取时钟时间的同时测量其运动状态来恢复这种丢失的精度。
KEKB 是一台 8x3.5 GeV 非对称电子-正电子对撞机,旨在实现质心能量为 10.58 GeV 的电子-正电子对撞。其使命是支持高能物理研究计划,研究 B 介子衰变中的 CP 破坏和其他主题。其目标光度为 10 34 cm~ 2 s~ 1 。KEKB 经日本政府批准,于 1994 年 4 月正式开始建设,为期五年。KEKB 的两个环(低能环 LER 用于 3.5 GeV 的正电子,高能环 HER 用于 8 GeV 的电子)将建在现有的 TRISTAN 隧道中,隧道周长为 3 公里。TRISTAN 的基础设施将得到最大程度的利用。利用较大的隧道宽度,KEKB 的两个环将并排建造。由于束流轨迹的垂直弯曲往往会增加垂直束流发射率,因此其使用量被最小化。
试卷 I - 力学与波动 第一单元 惯性参考系、牛顿运动定律、直线和圆周运动中粒子的动力学、保守力和非保守力、能量守恒、线性动量和角动量、一维和二维碰撞、横截面。 第二单元 简单物体的转动能量和转动惯量、刚体在水平和倾斜平面上的平动、转动和运动的综合、陀螺运动的简单处理。弹性常数之间的关系、梁的弯曲和圆柱体的扭转。 第三单元 中心力、两粒子中心力问题、减小质量、相对和质心运动、万有引力定律、开普勒定律、行星和卫星的运动、地球静止卫星。 第四单元 简谐运动、SHM 的微分方程及其解、复数符号的使用、阻尼和强迫振动、简谐运动的合成。波动的微分方程、流体介质中的平面行进波、波的反射、反射时的相变、叠加、驻波、压力和能量分布、相速度和群速度。
摘要 本研究提出并评估了虚拟现实 (VR) 训练模拟器的评分和评估方法。VR 模拟器可捕获详细的 n 维人体运动数据,这些数据可用于性能分析。开发了定制的医疗触觉 VR 训练模拟器,并用于记录来自 271 名具有多种临床经验水平的受训者的数据。提出了 DTW 多元原型 (DTW-MP)。VR 数据被分为新手、中级或专家。用于时间序列分类的算法的准确率为:动态时间规整 1-最近邻 (DTW-1NN) 60%,最近质心 SoftDTW 分类 77.5%,深度学习:ResNet 85%,FCN 75%,CNN 72.5% 和 MCDCNN 28.5%。专家 VR 数据记录可用于指导新手。评估反馈可以帮助受训者提高技能和一致性。动作分析可以识别个人使用的不同技术。可以实时动态检测错误,发出警报以防止受伤。
神经封闭证书Alireza Nadali; Vishnu Murali; Ashutosh Trivedi; MDPS Mateo Perez中的LTL和Omega-grounder目标的Majid Zamani学习算法;法比奥·索恩齐(Fabio Somenzi); Ashutosh Trivedi朝着K-Means聚集Stanley Simoes的更公平的质心; deepak p; Muiris MacCarthaigh的稳定性分析具有神经Lyapunov功能的切换线性系统Virginie Debauche;亚历克·爱德华兹(Alec Edwards); RaphaëlJungers; Alessandro Abate Advst:重新访问单个领域概括的广托Zheng的数据增强; Mengdi Huai; Aidong Zhang Omega规范决策过程Ernst Moritz Hahn; Mateo Perez; Sven Schewe;法比奥·索恩齐(Fabio Somenzi); Ashutosh Trivedi; Dominik Wojtczak Sentinellms:私人和安全推理的语言模型的加密输入适应和微调
对于初始服务,目标没有太阳同步轨道,其平均地方时漂移约为 20 度/年。目标升交点地方时将在 2024 年 11 月约为 13h45,这限制了可能的插入轨道。分离和发射后退轨后,对平台进行标准调试,并增加捕获机制和会合传感器的功能测试。服务器通过节点进动和倾角校正匹配目标轨道平面,执行轨道提升和相位调整,将自身置于预期目标位置后方 30 公里处并探测目标。服务器使用仅角度导航逐渐安全地缩短距离。服务器收集并下行目标和会合传感器上的数据,并调试相对 GNC 执行近距离轨迹,逐渐靠近目标并最终捕获目标。目标和服务器的组合堆栈退轨。捕获数据已传输,堆栈的质心与推力轴对齐。堆栈已准备好重返大气层并脱离轨道。