在这项研究中,我们对十项可公开可用的基准测试进行了全面的荟萃分析,该测试评估了使用RNA-SEQ数据评估基因融合检测工具的性能。我们的分析集中在关键性能指标上,包括灵敏度,精度和F1分数。我们评估了工具在不同数据集中的性能。我们检查了数据集特征的影响,例如样本类型(真实或模拟)和读取长度,以及结果对结果的其他样本和测序参数。除了评估绩效外,我们还分析了基准测试的组织和设计,突出了诸如数据集的清晰描述,详细的仪器参数和透明方法。但是,我们还确定了常见的陷阱,包括不足的可重复性信息,数据集的多样性和缺乏广泛接受的黄金标准数据集。这些限制使得很难始终如一地评估工具并跨基准进行比较。通过综合这些发现,我们为未来的基准项目提出了建议,强调了标准化的需求,提高透明度和健壮真理集的发展。本研究旨在帮助社区创建更可靠和可重复的基准测试,最终加速了用于临床和研究应用的基因融合检测工具的开发和评估。
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。
食品工业生产数百万吨的自然副产品。通过这项研究,我们遵循了一种使用丢弃的环境友好的策略,例如来自琼脂工业的大豆生产和海洋纤维素(Cell)的大豆蛋白分离株(SPI),以实现附加的价值应用。特别是,这项工作着重于基于大豆蛋白和纤维素的膜的发展,以及它们作为电池分离器膜朝着可持续储能系统的验证。基于物理相互作用,带有细胞的SPI膜与电解质显示出极好的兼容性。这些物理相互作用有利于膜的肿胀,在液体电解质中三天后达到1000%的肿胀值。膜的热稳定至180°C。经过液体电解质的约束后,观察到膜的微结构变化,但要保持多孔结构,而材料则易于处理。阴极半细胞中的离子电导率值,锂转移数量和电池性能分别为1C速率的5.8 ms.cm - 1、0.77和112 mAh.g-1。总体而言,考虑到环境精神问题和循环经济,可以证明可以根据废料获得更可持续的高性能锂离子电池。
质膜 H + -ATPases (PMA) 通过消耗 ATP 将 H + 从细胞质中泵出,从而产生膜电位和质子动力,以便营养物质跨膜转运进出植物细胞。PMA 通过调节根系生长、营养物质吸收和转运以及与丛枝菌根建立共生关系来参与营养物质的获取。在营养胁迫下,PMA 被激活以泵出更多的 H + 并促进有机阴离子排泄,从而提高根际营养物质的有效性。本文我们综述了 PMA 在植物有效获取和利用各种营养物质方面的生理功能和潜在分子机制的最新进展。我们还讨论了 PMA 在提高作物产量和品质方面的应用前景。
引言锂离子电池因其出色的能量密度、工作电压、循环寿命和自放电率而成为便携式电子设备的首选。为了提高性能和安全性,开发用于电动/混合动力汽车和储能系统的创新型电池组件至关重要 [1]。目前,大多数商用锂离子电池使用微孔聚烯烃膜作为隔膜,因为它们具有电化学稳定性和机械强度。然而,这些膜具有孔隙率低和电解质润湿性差等局限性,这会对电池的性能产生负面影响。此外,微孔聚烯烃膜在高温下表现出高热收缩率,这引发了安全问题 [2-4]。*通讯作者。电子邮件:m.javaheri@merc.ac.ir
1基础科学系,医学和健康科学学院,纳卡卢尼亚大学,08195 Sant Cugat delVallès,西班牙2计划,实体瘤,应用医学研究中心(CIMA),NAVARRA大学,31008 PAMPLONA,SPAIN DECIBER,SPAIN DE DECIBER NIBIBER 4.28 ciber n deciber n caimer ni 28 c纳瓦拉大学科学学院生物化学和遗传学系,西班牙Pamplona 5 Áticasy Digestivas (CIBEREHD),卡洛斯三世健康研究所,28029 马德里,西班牙 7 纳瓦拉大学应用医学研究中心(CIMA)分子治疗计划,31008 潘普洛纳,西班牙 8 纳瓦拉大学病理学、解剖学和生理学系,31008 潘普洛纳,西班牙 9 巴塞罗那自治大学神经科学研究所,贝拉特拉,08193 Cerdanyola del Vallès,西班牙 10 卡洛斯三世健康研究所,28029 马德里,西班牙 1 ncasals@uic.es(NC);电话:+34-935042000
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月6日。 https://doi.org/10.1101/2025.02.28.640817 doi:Biorxiv Preprint
摘要 设计和实施用于选择性传输离子和分子种类的先进膜配方对于创造下一代燃料电池和分离装置至关重要。有必要了解与设备操作相关的时间和长度尺度上的详细传输机制,无论是在实验室模型中还是在实际操作条件下的工作系统中。中子散射技术包括准弹性中子散射、反射率和成像,在世界各地的反应堆和散裂源设施的光束线站实施。随着新的和改进的仪器设计、探测器方法、源特性和数据分析协议的出现,这些中子散射技术正在成为设计、评估和实施燃料电池和分离装置先进膜技术的主要研究工具。在这里,我们以 ILL 反应堆源(法国格勒诺布尔劳厄-朗之万研究所)和 ISIS 中子和介子散裂源(英国哈威尔科技园区)为例,描述了这些技术及其开发和实施。我们还提到了世界各地其他设施正在进行的类似开发,并描述了一些方法,例如将光学和中子拉曼散射、X 射线吸收与中子成像和断层扫描相结合,并在专门设计的燃料电池中进行此类实验,以尽可能接近实际操作条件。这些实验和研究项目将在实现和测试新的膜配方以实现高效和可持续的能源生产/转换和分离技术方面发挥关键作用。
脂肽具有化学农药的有希望的替代品,用于植物生物防治目的。我们的研究通过检查它们与脂质膜的相互作用,探讨了脂肽表面蛋白(SRF)和富霉素(FGC)的独特植物生物防治活性。我们的研究表明,FGC具有直接的拮抗活性,对辣椒粉,并且在拟南芥中没有明显的免疫吸收活性,而SRF仅表现出刺激植物免疫力的能力。它还揭示了SRF和FGC对膜完整性和脂质堆积的影响。SRF主要影响膜的物理状态,而没有明显的膜通透性,而FGC透化膜而不会显着影响脂质堆积。从我们的结果中,我们可以提出脂肽的直接拮抗活性与它们透化脂质膜的能力有关,而刺激植物免疫的能力更可能是它们改变膜的机械性能的能力。我们的工作还探讨了膜脂质成分如何调节SRF和FGC的活动。固醇对两种脂肽的活性产生负面影响,而鞘脂会减轻对膜脂质填料的影响,但会增强膜泄漏。总而言之,我们的发现强调了考虑膜脂质填料和泄漏机制在预测脂肽的生物学作用中的重要性。它还阐明了膜组成与脂肽的有效性之间的复杂相互作用,从而提供了靶向生物控制剂设计的见解。
质膜损伤(PMD)在所有细胞类型中都由于环境扰动和细胞自主活性而发生。但是,除了恢复或死亡,PMD的细胞结局在很大程度上仍然未知。在这项研究中,使用萌芽的酵母和正常的人成纤维细胞,我们发现细胞衰老(稳定的细胞周期停滞导致有机衰老)是PMD的长期结果。我们使用芽酵母的遗传筛查意外地确定了PMD反应与复制寿命法规之间的紧密遗传关联。此外,PMD限制了萌芽酵母中的复制寿命;膜修复因子的上调ESCRT-III(SNF7)和AAA-ATPase(VPS4)扩展了它。在正常的人成纤维细胞中,PMD通过Ca 2+ –p53轴诱导过早衰老,但不是主要的衰老途径,DNA损伤响应途径。ESCRT-III(CHMP4B)的瞬时上调抑制了PMD依赖性衰老。 与mRNA测序结果一起,我们的研究强调了一种未充分考虑但无处不在的衰老细胞亚型:PMD依赖性衰老细胞。ESCRT-III(CHMP4B)的瞬时上调抑制了PMD依赖性衰老。与mRNA测序结果一起,我们的研究强调了一种未充分考虑但无处不在的衰老细胞亚型:PMD依赖性衰老细胞。