密歇根州立大学和夏威夷大学马诺阿分校的研究人员一直在寻找线索,以解释为什么有些珊瑚会白化,而有些却能抵抗白化,这些信息可能有助于珊瑚礁在未来更好地抵御海水变暖。研究小组使用质谱仪分析了珊瑚的生物化学性质,以了解抵抗白化和易受影响的珊瑚的区别。科学家发现,珊瑚中生活着两种不同的藻类群落。藻类细胞内含有称为脂质的化合物。脂质虽然“脂质”一词有时被用作脂肪的同义词,但脂肪是脂质的一个子类。脂质还包括油、蜡、某些维生素(如 A、D、E 和 K)、激素以及大部分非蛋白质组成的细胞膜。脂质不溶于水。研究人员的分析检测到了两种不同的脂质配方。
至 PRIME-1:授予 Intuitive Machines 公司,他们的第二个任务 (IM-2) 计划使用他们的 Nova-C 着陆器降落在南极地区。极地资源冰矿开采实验-1 (PRIME-1) 是月球上的一次现场资源利用演示。PRIME-1 包括用于探索新地形的风化层和冰钻 (TRIDENT) 和用于观测月球操作的质谱仪 (MSOLO),用于测量 1 米深度以下物质的挥发性含量。此次交付还将包括一个 LRA、一个用于测试无线网络的小型月球前哨探测车和一个 µ - 跳跃器演示,它将在进入(和离开)永久阴影区域 (PSR) 的途中跳跃到多个位置。跳跃器将拍摄图像并使用月球辐射计 (LRAD) 热红外测量表面亮温、毫米到厘米级的表面粗糙度和热惯性。
David T. Young Young 博士的主要科学兴趣和贡献集中在研究和了解太阳系等离子体的化学成分以及成分对行星磁层动力学的影响。 为了追求这些兴趣,Young 博士领导或参与了几种广泛用于研究空间等离子体的尖端光谱仪的设计和开发。 基于他的仪器进行的实验有助于更好地了解陆地、行星和彗星磁层。 20 世纪 70 年代,Young 博士表明地球磁层的成分与太阳周期的紫外线辐射密切相关。 20 世纪 80 年代,他的工作集中于研究赤道磁层中发现的自生离子回旋波对重离子(He + 和 O + )的加速。 20 世纪 90 年代,他的工作主要集中于开发他正在开发的仪器的测量技术。到了 21 世纪初和 21 世纪 10 年代,杨博士将注意力转向了土星磁层的成分相关复杂性。他发现冰卫星释放的“水离子”主导着土星的磁层。他还致力于了解土卫六复杂的大气层和电离层,它们主要由带正电和负电的重碳分子组成。正是这些分子形成了覆盖土卫六表面的气溶胶颗粒。杨博士的实验室研究推动了尖端离子质谱技术的发展,开辟了新的实验可能性。他是第一个将质谱仪的能量范围和灵敏度提高了几个数量级的人,例如极地任务中的热离子动力学实验。他的工作导致了能量谱仪的小型化和性能的提高,例如罗塞塔号任务中的离子电子传感器,以及质谱仪,例如深空一号上的行星探索等离子体实验。 2002 年,他发明并领导了用于欧罗巴快船任务的超高分辨率 MASPEX 质谱仪(性能超越大多数实验室仪器)的早期开发。1988 年,杨博士构思了卡西尼等离子体光谱仪 (CAPS),这是一套集成的三台仪器套件,用于卡西尼号土星任务。由于他在伯尔尼大学期间在欧洲拥有长达十年的经验,他能够组建和管理一个团队,该团队最终包括来自美国和五个欧洲国家的 170 名科学家和工程师。1990 年,NASA 选择 CAPS 并由杨博士担任首席研究员,部分原因是欧洲团队的贡献为 NASA 在整个任务期间节省了 1500 万美元(以 2022 年的美元计算)。2019 年,卡西尼项目管理部门告知他,CAPS 的数据为 500 多篇出版物和 26 篇博士论文做出了贡献。在他的职业生涯中,杨博士Young 为实验空间科学界做出了贡献,他在四所机构设计和建造了高精度校准系统:莱斯大学、伯尔尼大学、洛斯阿拉莫斯大学和西南研究院的两所机构。这些系统已用于各种项目,包括阿波罗月球表面实验包、欧空局的罗塞塔号 67P/Churyumov-Gerasimenko 任务和卡西尼号。除了实验空间科学工作外,Young 博士的兴趣还包括教育下一代。为此,他教授了磁层物理和伽马射线光谱学课程(伯尔尼大学),以及空间仪器和航天器设计课程(伯尔尼大学)
引入晚期质谱技术的引入使人们可以更深入地了解复杂的生物系统。星体质谱仪代表了高通量蛋白质组学的新时代,具有提高灵敏度,速度和定量准确性。本届会议将涵盖星体仪器的能力,其对蛋白质识别和定量可能性的影响以及其在加速生物医学研究中的作用。除了技术进步,优化的实验设计和制备实践以及强大的数据分析策略外,对于在蛋白质组学研究中获得有意义的结果至关重要。会议将探讨实验计划,样本准备,数据获取,统计验证和蛋白质组学数据解释的最佳实践。会议2 |彻底改变了您的生物标志物发现 - 在规模时通过未靶向的质谱蛋白质组学揭示蛋白质组:18.02.2025,11:30 am(GMT+1)链接到会话2: https://seerbio.zoom.us.us/j/94880841661?pwd=g61dxljlvor4rh0242ffqvda4tflh.1&from = addon发言人:Maik M. Pruess博士:
用于药物发现的加速血浆蛋白质组学:血浆蛋白质组学正在通过通过液体活检对血液中的循环蛋白进行全面分析,从而彻底改变了药物发现。这种方法确定了早期疾病检测的关键生物标志物,加速了新型药物靶标的发现,并提高了药物发育的效率。血液中的蛋白质分析支持个性化的医学,从而对个人对治疗的反应提供了见解。总体而言,血浆蛋白质组学具有更精确,更有效的药物疗法的新时代的希望,对改善患者预后产生了重大影响。研究人员可以利用Evosep独特的端到端样品制备工作流程和Thermo Fisher的最新最新的Thermo Scientific Orbitrap星体质谱仪功能来加快对临床相关生物标志物的识别和验证。
这项研究的目的是开发一种新方法,该方法可以确定所选药物(Mephedrone,MDMA和可卡因及其代谢物:苯并核酸,Norcocaine和Cocaethylene)的全部血液,同时不仅符合绿色的标准,而且还达到平衡分析和经济方面的标准。为此,将固相微萃取与毛细管电泳连链型配对到质谱仪。该方法已验证。参数,例如LOD(1.2-7.2 ng/ml),LOQ(3.7–24.0 ng/ml),Intra-(2.24–10.72%)和日期(3.97–19.01%)(3.97–19.01%)精度,偏见,偏见(RE = 0.1-14.6%),恢复(91.7-105.4%)和4% - exix and 5-105.4% - E.1 EE(91.7-105.4%),(extrix)。确定苯甲甲蛋白)。除了分析参数外,还评估了该方法的绿色及其实用性和成本效果。将白色分析化学方法用于此目的。获得了90.6/100.0的高分,表明该方法可以很好地平衡这三个方面。在此基础上得出结论,开发的DI-SPME/CE-MS方法可能是用于毒理学分析的有用工具。
该方法描述了全血中药物的定性检测程序。将回收化合物添加到全血样本中,然后通过使用有机溶剂的液/液萃取将目标化合物和回收化合物有效地从血液样本中分离出来,并在 HPLC C-18 柱上分离。然后使用串联质谱仪分析样本,利用选择离子监测 (SIM),对响应较差的化合物进行额外的同时检测,使用多反应监测 (MRM)。请注意,该方法产生的半定量结果来自强制通过零曲线的单点校准,以获得近似定量结果,这些结果仅供分析人员用作近似值的指南。任何分析证书都不得报告近似定量值。在确认分析之前,应对所有药物血液样本运行此方法,并在生成结果报告之前记录和批准任何例外情况。这种定性方法主要用作定量分析之前的筛选工具。对于仅在血液中定性检测出的目标化合物,也应采用此方法来确认这些化合物。设备和用品:
将定量分析与Hilic Polar代谢组学工作流程中的新第4代6495 LC/TQ结合在一起。靶向代谢组学方法提供了具有较大动态范围的代谢物的敏感而精确的测量。先前描述的是使用带有细胞或等离子体的Bravo样品制备平台的Hilic Polar代谢物工作流程,1290个Infinity II Bio LC,用于改善金属敏感分析物的性能,以及6495 LC/TQ质谱仪,具有〜500极性代谢物的数据库和保留时间(图1)。1 6495 LC/TQ的速度允许在同一注射中精确地分析以正离子模式和负离子模式的数百个分析物。此工作流程和数据库可以通过多种方式部署,从代谢物途径发现(分析)到样本中数百个分析物的半定量分析,或者使用同位素标记的内部标准品进行绝对定量。
该套件由两个已集成的内部标准的专利96孔滤清器组成,系统适用性测试样品,冻干校准标准和质量控制(QCS),这些(QCS)是根据协议重构的。实验样品,由11个人血浆样本(5名女性,6名男性,17-65岁,没有医学诊断),NIST SRM 1950和30个人类受试者的粪便池组成,并在WebIDQ中注册,并与校准和QC样品一起排列,并在96 Well板块上进行了排列。除校准标准以外的所有样品以三个重复测量。工作列表直接导出到质谱仪软件,并打印了用于套件准备的布局。粪便样品是根据生物陈列物方案制备的,用于使用先例均质剂和异丙醇作为提取溶剂来分析粪便。根据用户手册制备了在两个套件板中的每个孔中的10μl样品,然后进行衍生化,提取,最后稀释到三个单独的测量板中:一个用于LC-MS/MS:FIA-MS/MS(量子500和XL零件)。
使用了在多个反应监测(MRM)模式下运行的液相色谱(LC)三倍四极杆质谱仪(MS)。该系统由Thermo Ulti-Mate 3000 LC系统组成,该系统耦合到abciex Q-trap 4000 ms。使用Restek Raptor Biphenyl柱(150 mm x 4.6 mm x 2.7 µm)实现分离。分析时间为15分钟,流速为0.75 ml/min,注射体积为15 µL。在运行期间,使用了12分钟的溶剂梯度(95%水 / 5%甲醇 + 0.1%甲酸甲醇至100%甲醇,以0.1%的形式),然后是3分钟的同位时期(100%甲醇 + 0.1%甲酸)。MS利用零空气氮作为脱溶剂和雾化气体。使用电喷雾电离(ESI)源,温度为550°C,喷雾电压为+5500V。使用定时MRM方法来监测所有药物和内标的两个过渡(一种用于定量和确认性识别)。将MRM检测窗口设置为120 s,目标扫描时间设置为0.1 s。