摘要:人们普遍认为溶解有机物 (DOM) 可以控制环境中痕量金属的溶解度和反应性。然而,控制金属-DOM 络合的机制仍然不清楚,主要是因为在组成 DOM 的复杂有机化合物混合物中分离和定量金属-有机物种的分析难度很大。本文,我们描述了一种使用液相色谱在线电感耦合等离子体质谱 (LC-ICP-MS) 对有机-金属络合物进行定量分离和元素特异性检测的方法。该方法实施柱后补偿梯度以稳定整个 LC 溶剂梯度中的 ICP-MS 元素响应,从而克服了实现 LC-ICP-MS 定量准确度的主要障碍。通过外部校准和内部标准校正,该方法得到的有机-金属络合物浓度始终在其真实值的 6% 以内,无论络合物的洗脱时间如何。我们利用该方法评估了四种固定相(C18、苯基、酰胺和五氟酰基苯基丙基)对苏旺尼河富里酸和苏旺尼河天然有机质中环境相关痕量金属(Mn、Fe、Co、Ni、Cu、Zn、Cd 和 Pb)回收率和分离率的影响。C18、酰胺和苯基相通常可获得最佳的金属回收率(除 Pb 外,所有金属的回收率均 > 75%),其中苯基相分离极性物质的程度大于 C18 或酰胺相。我们还对氧化和还原土壤中有机结合的 Fe、Cu 和 Ni 进行了分馏,揭示了土壤氧化还原环境中金属-DOM 形态的不同。通过对 DOM 结合金属进行定量分馏,我们的方法为加深对整个环境中金属-有机络合物的机理理解提供了一种手段。■ 引言
*除 1-(3-氯苯基)哌嗪、25I-NBOMe 和 N-去甲基-他喷他多外,每种目标分析物均使用其自己的标记内标,这三种分析物分别使用内标去甲氯胺酮-d4、氯氮卓-d5 和唑吡坦-COOH-d4。
缩写和首字母缩略词列表 AA 马兜铃酸 APOBEC 载脂蛋白 B mRNA 编辑催化多肽样 BCERP 乳腺癌和环境研究计划 BMI 体重指数 CIMP CpG 岛甲基化表型 COSMIC 癌症体细胞突变目录 EBV 爱泼斯坦-巴尔病毒 EWAS 表观基因组关联研究 GC-HRMS 气相色谱-高分辨率质谱法 HCC 肝细胞癌 HPLC-ICPMS 高效液相色谱-电感耦合等离子体质谱法 HTAN 人类肿瘤图谱网络 ICR 印记控制区 ICPMS 电感耦合等离子体质谱法 iPSC 诱导多能干细胞 MC-ICPMS 多接收电感耦合等离子体质谱法 MEC 多民族队列 MEF 小鼠胚胎成纤维细胞 NCI 国家癌症研究所 NIEHS 国家环境健康科学研究所 NIH 国立卫生研究院 PFAS 全氟和多氟烷基物质 RCC 肾细胞癌 SBS 单碱基置换 TCGA 癌症基因组图谱
1。红外和拉曼光谱(分为三个部分),由爱德华·布雷姆(Edward G.X射线光谱法,由H. K. Herglotz和L. S. Birks编辑3.质谱法(分为两部分),由小查尔斯·梅里特(Charles Merritt,Jr。)和查尔斯(Charles N. McEwen)编辑4。聚合物的红外和拉曼光谱,H。W. Siesler和K. Hofland-Moritz 5。NMR光谱技术,由Cecil Dybowski和Robert L. Lichter 6。红外微光谱:理论与应用,由Robert G. Messerschmidt和Matthew A. Harthcock编辑。流动原子光谱,由Jose Luis Burguera编辑8。生物材料的质谱法,由Charles N. McEwen和Barbara S. Larsen编辑9.田间解吸质谱法,ltlszi(j pr6kai 10。色谱/傅立叶变换红外光谱及其应用
摘要:用传统质谱法分析核酸时,反离子会造成质量不均匀,限制可分析的 DNA 大小,因此分析起来十分复杂。在这项研究中,我们使用电荷检测质谱法分析兆道尔顿大小的 DNA,从而克服了这一限制。使用正模式电喷雾,我们发现 DNA 质粒的电荷分布截然不同。低电荷群体的电荷像紧凑的 DNA 折纸一样,而高电荷群体的电荷分布范围很广。对于高电荷群体,测量质量与 DNA 序列预期质量之间的偏差始终在 1% 左右。对于低电荷群体,偏差更大且变化更大。高电荷群体归因于随机卷曲配置中的超螺旋质粒,其宽电荷分布是由随机卷曲可以采用的丰富多样的几何形状造成的。高分辨率测量表明,随着电荷的增加,质量分布会略微向低质量方向移动。低电荷群体归因于质粒的浓缩形式。我们认为凝聚形式是由熵捕获引起的,其中随机线圈必须经历几何变化才能挤过泰勒锥并进入电喷雾液滴。对于较大的质粒,剪切(机械破碎)发生在电喷雾期间或电喷雾界面。降低盐浓度可以减少剪切。■简介质谱 (MS) 在核酸表征中发挥着重要作用。1、2 电喷雾和基质辅助激光解吸/电离 (MALDI) 都已用于将 DNA 和 RNA 离子引入气相进行分析,但 MALDI 与飞行时间 (TOF) MS 的组合应用最为广泛。例如,MALDI-TOF 继续用于表征单核苷酸多态性 (SNP),这可提供有关疾病易感性遗传特征的重要信息。对于突变和 SNP 的分析,只需要分析小于 25 nt 的小寡核苷酸(核苷酸)。这是幸运的,因为反离子(通常是 Na +、K + 或 Mg 2+)与 DNA 和 RNA 的高电荷磷酸骨架结合,导致峰宽和灵敏度降低。已经开发出几种方法来脱盐核酸。3、4 然而,由金属离子加合引起的异质性会随着尺寸的增加而增加,并且由于电荷状态分辨率的丧失,常规 MS 不再可能分析兆道尔顿大小的 DNA 和 RNA 物种。另一方面,新型疫苗和基因疗法等新兴疗法携带着大量的遗传物质。基因组完整性对于有效的治疗是必不可少的,对完整基因组的质量测量提供了一种快速而直接的方法来检查缺失和添加。5
泡沫。传统的 PFAS 检测分析方法采用耗时的提取方法,然后进行冗长的色谱分离和质谱检测。为了克服这些问题,锥形喷雾电离 (CSI) 由折叠滤纸制成的三维锥体组成,允许将固体样品放置在空心隔间内。将溶剂应用于固体样品,在那里发生液体萃取。在锥体的尖端有一个小孔,允许 PFAS 通过,同时保留土壤。施加高电压使分析物电离,然后通过质谱仪 (MS) 进行分析。虽然传统 CSI 在分析固体方面表现出色,但由于手动锥体结构的多变性,可重复性可能是一个限制。
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化
质谱法已成为药物发现和开发过程中整个 DMPK 和生物分析研究领域的主要分析工具。本短期课程将提供关于质谱法在 DMPK 和生物分析中如何支持研发和注册过程的论文。本课程将使用案例研究来重点介绍在发现和开发阶段使用质谱法测量小分子药物、生物制剂及其结合物的“原因”和“方法”知识库。内容将包括 DMPK 概念/原理的介绍、药物发现/开发过程的概述以及 DMPK 研究中常见的做法。将讨论当前应用于先导优化中的 ADME 筛选、PK 研究中药物量化、动物和人体药物代谢物鉴定以及临床和毒理学研究中的 GLP 生物分析量化的质谱技术,以及实验设计、数据解释和数据报告的最新行业实践。我们将提供解决常见 DMPK 和生物分析问题的案例研究,以强化课堂上学到的概念和分析技术。
仅用于一般实验室。不适用于诊断程序。©2022 Thermo Fisher Scientific Inc.保留所有权利。Clinmass和食谱是食谱化学品 +仪器GmbH的商标。元素科学是元素科学的商标。所有其他商标都是Thermo Fisher Scientific及其子公司的财产。TN000598-EN 0322S
ISO-10993中概述了《医疗设备萃取物和浸润器的监管指南》,“医疗设备的生物评估”,第12、17和18部分,特别是1-3。可提取的测试方法通常提供两个(通常是分开的)目的,并量身定制以适合该特定目的。方法可以设计用于以半定量非目标方式对提取物进行一般筛选。或,可以使用针对特定的“靶向”化学实体评估所选方法性能标准的目标定量方法。尽管在所有情况下都需要高性能的方法,但在所讨论的特定测试文章(和这些物种的定量)中,预期在内源性水平上存在的方法性能与特定的可提取物种仅在目标方法中有目的地建立。筛选方法(非目标)仍然可以使用标准来验证色谱,方法性能,执行半定量,系统适用性(以及更多)。但是,理想地设计了可靠的筛选方法,无论其性质如何,或在进行测试时的任何矩阵中都使用。并且它们旨在最大程度地减少检测极限(与药物药物测定方法不同,在该方法通常不是问题的情况下)。