摘要在这项研究中,固相分散提取(SPDE)用于血清预处理以及在同时分析止痛药和辅助镇痛药(总计30种类型)中,通常用作疼痛患者的第一和第二选择治疗,并通过液态色谱/时间播放时间/时间仪表术(LC/TOF-MS)。使用OASIS MCX作为固相凝胶对SPDE的最佳条件的检查表明,提前剥夺的血清样品的回收率为49-87%,而当不进行脱蛋白时,回收率高达78-112%。无论存在或不存在depoteinizin,矩阵效应都在±10%以内,即使没有进行脱蛋白化,也可以抑制其影响。结果表明,当使用SPDE进行预处理时,血清脱蛋白是不必要的。在LC/TOF-MS测量中,使用Core-Shell型柱柱C18(150 mm×2.1 mm,1.7 µm)作为LC柱和50 mm乙酸铵缓冲液(pH 7.8)/乙酰酮/甲醇/甲醇混合物作为移动相。30种药物分离良好,定量极限为0.25-10 ng/ml,校准曲线的相关系数高于0.998,平均回收率范围为77.7.7%至112.1%。该方法在法医和急诊医学领域的血清中筛选镇痛药和辅助镇痛药(总共30种类型)很有用。关键词:止痛药;固相分散提取; LC/TOF-MS;血清
蜂蜜是世界各地消费的天然健康产品。由于蜂蜜的营养价值以及在现代医学中的药用活性,其消费量正在不断增加[1,2]。然而,在养蜂业中,一些养蜂人使用抗生素对抗多种细菌性疾病。因此,可以在蜂蜜中检测到微量抗生素[3]。在蜂蜜、牛奶、鸡蛋、鱼或肉等各种样品中都发现了抗生素残留(如磺胺类药物)[4–7]。最近,已经开发出各种策略来有效分析蜂蜜中的 SA 残留[8,9]。磺胺 (SA) 残留分析是一个主要关注点,因为这些药物的存在可能是一个公共卫生问题。此外,它可能导致抗生素耐药性致病菌的产生[10]。适当测定蜂蜜中极低浓度的 SA 是一项真正的分析挑战。已经采用各种分析方法来分析蜂蜜样品中的 SA 残留[11]。鉴于蜂蜜作为纯天然产品存在此类风险,欧盟已禁止在农业中使用 SA 类抗生素。欧盟还设定了蜂蜜等动物食品中 SA 的 MRL [12]。以初始物质(SA 及其代谢物)的总和为基准,SA 必须低于采用最佳分析方法得出的 LOQ。土耳其法律当局已禁止在养蜂业中使用抗生素 [13]。尽管最初建议使用磺胺噻唑进行控制,但由于在使用数月后在蜂蜜中发现残留物,因此已禁止使用。由于 SA 含量过高会带来这些问题,因此对 SA 的定量分析是一个主要关注点,必须对其进行监测才能检测出食品(如蜂蜜)中是否存在 SA。因此,开发更灵敏、更先进的分析方法来测定如此低含量的 SA 残留至关重要。当今全球市场对食品安全和质量的关注度越来越高。因此,开发新的、先进的分析方法至关重要。对于食品组学而言,主要挑战之一是改进分子水平上有关有害化学物质作用的有限信息[14]。从这个意义上说,将现代分析方法与组学方法相结合,可以提供一种强有力的工具来应对检测食品中痕量潜在有害化学化合物的挑战[15]。LC-HRMS(高分辨率MS)是针对复杂基质进行靶向或非靶向(非靶向)筛选的最有力工具之一,因为该技术具有许多独特的优势,例如高分辨率、
热解气相色谱-质谱法 (Py-GC-MS) 在环境分析中具有巨大潜力。该技术主要用于对由于尺寸较大而无法通过液相色谱或气相色谱进行表征的大分子进行化学鉴定。通过热解(受控热降解),这些大分子被分解成更简单的分子,可以通过气相色谱分离并通过质谱检测。该技术传统上用于环境样品中有机物和腐殖质、污染物、木质素等的表征。它可以识别整合大分子的不同类型化学单元。此外,最近,该技术在环境样品中存在的微塑料的化学表征中经历了重要的繁荣。这引发了它在这种类型的基质中的使用。我们描述了 Py-GC-MS 的基本原理和模式,并概述了一些环境分析的最新应用,特别强调腐殖质和/或其他类型的有机物成分以及微塑料,但也报告了其他有趣的环境相关应用。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 3 月 4 日发布。;https://doi.org/10.1101/2020.03.03.970251 doi:bioRxiv preprint
血液样本首先通过离线蛋白质沉淀处理,同时添加内标。提取的样本注入 Thermo Scientific™ Transcend™ TLX 系统,使用 TurboFlow 技术进行在线样本清理和分析色谱分析,该系统连接到 TSQ Quantis 三级四极杆质谱仪,加热电喷雾电离以正模式运行。检测采用选择反应监测 (SRM) 进行,使用七种氘代内标进行定量。使用自制校准品和对照品评估方法性能,包括定量限、线性范围、准确度以及批内和批间精密度。
老材料在微电子领域的重要性日益凸显,不仅体现在二级封装(即印刷电路板组装层面),也体现在一级封装(例如,图 1 a 所示的倒装芯片组装)中。1 在这些应用中,各种类型、不同尺寸的焊料凸块用于三维集成电路 (3D-IC) 的复杂互连。1a 典型焊料凸块的构建示意图如图 1 b 所示。当今 300 毫米晶圆级焊料凸块应用技术上最相关的合金材料是电沉积共晶 SnAg。1b 然而,由于 Sn 2+ 和 Ag + 离子的标准还原电位差异很大(ΔE0≈0.94V),通过电化学沉积制造 SnAg 合金是一项艰巨的任务。为了解决这个问题,通常会在 SnAg 电镀液中添加络合剂和螯合剂,这些络合剂和螯合剂选择性地作用于较惰性的 Ag + 离子,从而减慢其沉积速度以与 Sn 2+ 相兼容,并促进两种金属的共沉积。2 这是实现所需合金成分的关键先决条件。3 此类络合剂和螯合剂的另一个补充功能是稳定含 Sn 电解质中的 Ag + 离子,防止其还原为金属 Ag 以及随之而来的 Sn 2+ 氧化
图4:提取的0.5 ppm alachlor,endrin,dieldrin,α -Chlordane,γ -Chlordane,Cis -Nonachlor,Trans -Nonachlor 的萃取离子色谱图
应同时分析比较标准。应充分描述比较标准的制备和分析顺序。例如:样品之前或之后的第一次单次注射;分析当天注射的所有标准的平均值;两个最接近的括号标准的平均值。如果基质效应改变了纯标准的光谱或色谱,以至于无法满足正常的确认标准,则可以使用含有标准的对照提取物代替纯标准。需要加标对照提取物进行比较的确认程序应得到证实。应在不添加标准的情况下分析用作对照的组织,以证明没有干扰。