细胞和基因治疗:在这种治疗中,使用病毒或基因组编辑来编辑基因组。由此产生的遗传异质性可能会影响这种治疗的安全性和有效性,但传统方法,例如扩增转基因细胞、分离克隆、通过测序或qPCR分析编辑效率,非常耗时费力。由于对细胞进行单独分析,单细胞分析可以跳过克隆扩增步骤,从而节省时间。此外,基因转移/基因组编辑的效率和意外易位的检测可以在单次检测中进行(图3)。
数十亿美元致力于推进测序技术。这导致了通过数量级的顺序和基于测序的应用程序爆炸的降低。但是,样品制备过程仍然是一个重要的瓶颈。手动处理样品时,样本质量,费力的协议和高样本成本仍然是可伸缩性和一致性的重要障碍。自动化液体处理程序可实现更高的吞吐量,但实施的重大障碍持续存在:昂贵的方法开发,高资本支出,对多重
•通常符合参考手册方法 •可直接测量环境 PM2.5 的质量 •这些是电动空气采样器,以恒定速率通过旋风分离器或撞击器抽取空气,其作用类似于颗粒分离器,悬浮的 PM2.5 被分离并收集在过滤器上。然后从采样器中取出过滤器,带回实验室,平衡并称重以确定环境 PM2.5 的质量浓度 •成本高、耗时且费力 •在变化的温度和湿度条件下,采样、运输到实验室、平衡、半挥发性成分(如有机物和硝酸盐通过蒸发)的称重过程中容易出错。
在整个 PCR 制造过程中,我们会考虑影响 PCR 塑料制品质量的重要参数。这始于精密模具的设计和建造。只有精密成型的工具才能生产出极其均匀的塑料制品,其良好的均匀性可最大限度地减少数据变化。该产品是在高纯度制造区采用自动化工艺生产的。我们进行了费力的净化程序,因为最微小的化学物质残留痕迹都可能抑制 PCR 扩增。我们的制造过程,从成型到最终的包装,都是在受控条件下高度自动化的。我们有采用层流保护的植物
该博士项目是大型 MuFox 项目的一部分,该项目汇集了加拿大航空领域的多个学术和工业合作伙伴。MuFox 的目标是开发商用飞机翼盒的多学科优化框架。正是在这种背景下,该项目寻求开发方法和工具,将拓扑优化集成到翼盒和更具体的加强板的设计过程中。事实上,文献和工业中的多次尝试已经证明,当前在加强板上使用拓扑优化并不允许获得任何显着的质量增益,并且其在设计过程中的使用仍然很费力。
该博士项目是大型 MuFox 项目的一部分,该项目汇集了加拿大航空领域的多个学术和工业合作伙伴。 MuFox 的目标是开发商用飞机机翼盒的多学科优化框架。正是在这样的背景下,该项目寻求开发方法和工具,将拓扑优化集成到翼盒和更具体地说加固面板的设计过程中。事实上,文献和业界的多次尝试已经证明,当前对加固面板使用的拓扑优化并不能实现任何显著的质量增益,并且在设计过程中使用拓扑优化仍然很费力。
鉴定食源性病原体是电泳在食品检测中的主要用途之一。病原微生物,包括细菌、病毒和真菌,是世界各地许多食源性疾病的病因。鉴定这些病原体的传统方法通常需要培养程序,这既费力又需要专用工具。电泳是一种更快捷、更可靠的替代方法。例如,该方法可用于分析病原微生物特有的蛋白质或 DNA 标记。确认病原体存在的有效方法是使用凝胶电泳分离和鉴定从食品样本中分离出的蛋白质或核酸。为了阻止流行病并在食用前保证食品的安全,及时检测至关重要。
近年来,机器学习算法在图像识别任务中取得了巨大成功,与此同时,电子病历和诊断成像的使用也急剧增加。本综述介绍了应用于医学图像分析的机器学习算法,重点介绍了卷积神经网络,并强调了该领域的临床方面。在医学大数据时代,机器学习的优势在于,可以通过算法发现数据中重要的层次关系,而无需费力地手工处理特征。我们涵盖了医学图像分类、定位、检测、分割和配准的关键研究领域和应用。最后,我们讨论了研究障碍、新兴趋势和可能的未来方向。
Illumina下一代测序(NGS)技术提供了高质量,准确的数据,并实现了广泛的基因组学,转录组学和表观基因组学的应用。NGS工作流程从库准备到测序再到数据分析和解释。Illumina产品组合涵盖了整个工作流中的一系列组件,这些组件解决了许多可能的应用领域。由于Illumina产品的多样性,一些新客户发现将单个组件集成到单个工作流程(通过变体报告隔离遗传材料)是费力且耗时的。此外,尽管许多Illumina工作流与自动化兼容,但某些客户对将自动化方法集成和优化自动化方法所需的技术专长感到恐惧。