结论这项工作显示出令人鼓舞的初步结果,其原理具有零电容的CDIR可以成功读取单个光子,减少电容对于降低噪声并允许更快的吞吐量是有利的。带有和不含电容的4角CDIR读数的仪器表明,使用ML可以改善单个光子的空间重建。原则上已经证明了3 x 3 CDIR读数的证明,并将进行进一步的工作,以研究提高空间分辨率的准确性的可能性,使用波形的整合而不是峰。此外,还将评估其他几何形状,以优化读取电子和带宽。
中微子是一种亚原子粒子,是粒子王国中最难捉摸的粒子之一。费米实验室是美国研究中微子的顶级实验室,并主持深层地下中微子实验,这是一项旨在揭开这些粒子之谜的国际旗舰实验,汇集了来自 30 多个国家的科学家。在费米实验室,研究人员正在使用人工智能并开发最先进的方法来检测和研究自然界最神秘的粒子,包括加快实验工作流程和增强事件重建。
模拟多体费米子系统的特性是材料科学、量子化学和粒子物理学领域一项突出的计算挑战。尽管基于量子比特的量子计算机可能比传统设备更有效地解决这一问题,但编码非局部费米子统计数据会引入所需资源的开销,从而限制其在近期架构中的适用性。在这项工作中,我们提出了一种费米子量子处理器,其中费米子模型在费米子寄存器中局部编码,并使用费米子门以硬件高效的方式进行模拟。我们特别考虑了可编程镊子阵列中的费米子原子,并开发了不同的协议来实现非局部门,从而在硬件级别保证费米统计数据。我们使用这个门集以及里德堡介导的相互作用门,为数字和变分量子模拟算法找到有效的电路分解,这里以分子能量估计为例进行说明。最后,我们考虑一种组合费米子量子比特架构,其中利用原子的运动自由度和内部自由度来有效地实现量子相位估计以及模拟格点规范理论动力学。
• 超透镜:通过亚波长间隔的纳米结构控制光的波前(振幅和相位)而实现的平面光学元件 • FNAL、哈佛和曼彻斯特的研发部门将其用作聚光器而不是成像设备 • 如果与小面积(1.3 毫米 x 1.3 毫米)SiPM 结合使用,估计光收集量可增加 15 倍 [AA.Loya Villalpando 等 arXiv:2007.06678] • 许多挑战:
Valleytronics是一个研究领域,利用电子自由度来进行信息处理和存储。强的山谷极化对于现实的山谷应用至关重要。在这里,我们预测,基于二维(2D)山谷材料的多合一隧道交界处的倾斜dirac费米子驱动的隧道谷效应(TVHE)。这些隧道连接中电极和间隔区域的不同掺杂导致隧道式迪拉克费米子的动量滤波,从而产生依赖于dirac-cone倾斜的强横向山谷霍尔电流。使用现有2D谷材料的参数,我们证明了这种TVE比先前报道的固有浆果曲率机制所引起的电视强得多。最后,我们预测,具有适当设计的设备参数(例如间隔宽度和传输方向)可以在隧道交界处发生共振隧道,从而可以显着增强山谷霍尔角。我们的工作开辟了一种新的方法,以在现实的谷化系统中产生山谷两极分化。
图2。在模拟时间时l = 500的快照𝜏(a)0,(b)9.8×10 6和(c)1.9×10 7的EO。217 Kymoknot确定的打结区域是红色的,而未打结的聚合物部分为218彩色蓝色。(d)沿着DNA链的3 1 219 Trefoil结中包含的珠子指数的开始(红线)和末端(蓝线),用于用于在面板中生成快照的轨迹(a,b,c)。220(e)结,n结中的珠子数量是根据(d)计算的模拟时间的函数。221
我们从自由费米子的角度研究变异量子算法。通过设计相关的LIE代数的明确结构,我们表明,量子相比优化算法(QAOA)在一维晶格上 - 具有脱钩角度 - 具有脱钩的角度 - 能够准备所有符合电路符号的费米斯高斯州的状态。利用这些宗教信仰,我们在数值上研究了这些对称性和目标状态的局部性之间的相互作用,并发现缺乏符号的情况使非局部状态更容易预先预测。对高斯状态的有效的经典模拟,系统尺寸高达80和深电路,用于研究电路过度参数化时的行为。在这种优化方案中,我们发现迭代的迭代数与系统大小线性线性缩放。更重要的是,我们观察到,与溶液收敛的迭代次数会随电路深度呈指数降低,直到它以系统尺寸为二次的深度饱和。最后,我们得出的结论是,可以根据梯度提供的更好的局部线性近似图来实现优化的改进。
电子邮件:oleksandrmalyi@gmail.com摘要:传统上,据信,化学计量化合物的形成被认为是增长效应,而不是系统的固有趋势。在这里,使用LA 3 TE 4的示例,我们证明,在N型间隙中,主带边缘和主导带内部的Fermi水平之间具有较大的内部间隙,Fermi-Level不稳定可以发展,从而减少了受体缺陷的形成能量。具体来说,LA 3 TE 4中的LA空位自发形成以产生受体状态,并通过电子孔重组从主导带中取出一小部分自由载体。如此独特的自兴奋剂机制允许稳定具有不同电子特性的一系列范围的远距离LA 3-X TE 4化合物。此外,我们还展示了如何将控制合成条件用作达到目标功能的旋钮,包括可控的金属对绝缘体过渡。
• 19 名 ASIC 设计师(2 名 JA)+ 1 个空缺职位 • 1 名博士、1 名 EECS 硕士生(西北大学) • 1 名科学家、2 名应用物理学家 • 1 名测试工程师、1 名工程助理 2021 年为学士、硕士或博士后学生启动 ASIC 设计助理计划(3-6 个月的培训计划) • 2021 年 5 名实习生(卡内基梅隆大学、多伦多大学、西北大学) • 4 名实习生(斯坦福大学、普渡大学、多伦多大学、UTA)– 2022 年将再招聘 2 名实习生