型号i rms(amps)OCL(MH min)最大DCR(MΩ)电感差(UH MAX)SQ1515VA203 1.5 20 390 200 SQ1515VA103 1.5 10 360 200 SQ151515VA852 200 SQ1515HA103 1.5 10 360 200 SQ1515HA852 1.8 8.5 170 200 SQ1515 HA552 2.5 5.5 5.5 115 200
摘要 强太赫兹 (THz) 电场和磁瞬变开辟了科学和应用的新视野。我们回顾了实现具有极端场强的亚周期 THz 脉冲最有希望的方法。在双色中红外和远红外超短激光脉冲的非线性传播过程中,会产生长而粗的等离子体串,其中强光电流会导致强烈的 THz 瞬变。相应的 THz 电场和磁场强度分别可能达到千兆伏每厘米和千特斯拉的水平。这些 THz 场的强度使极端非线性光学和相对论物理学成为可能。我们从光物质与中红外和远红外超短激光脉冲相互作用的微观物理过程、这些激光场非线性传播的理论和数值进展以及迄今为止最重要的实验演示开始,进行了全面的回顾。
抽象的柔性磁性材料在生物医学和软机器人的应用中具有巨大的潜力,但需要机械稳定。从机械角度来看,一种非凡的材料是蜘蛛丝。最近,已经开发了在可扩展和全水的过程中生产人工蜘蛛丝纤维的方法。如果具有磁性特性,则这种仿生人造蜘蛛丝纤维将是制造磁性执行器的绝佳候选者。在这项研究中,我们引入了磁性人造蜘蛛丝纤维,其中包含涂有Meso-2,3-二甲状腺酸糖核酸的磁铁矿纳米颗粒。复合纤维可以大量生产,并采用环保湿旋转过程。即使在高浓度(高达20%w/w磁铁矿)下,纳米颗粒也均匀地分散在蛋白质基质中,并且在室温下纤维是超磁性的。此启用了纤维运动的外部磁场控制,使适合致动应用的材料。值得注意的是,与常规的基于纤维的磁执行器相比,纤维表现出优异的机械性能和致动应力。此外,本文开发的纤维可用于创建具有自我恢复形状的宏观系统,从而强调了它们在软机器人应用中的潜力。
- CUESTA 皮埃尔-爱德华 ; - 戴斯勒 汤姆; - 达朗古尔·马蒂厄; - DARTENCET Sixte-Arnaud; - 德金妮·阿利克斯; - 德拉加德·劳伦; - 德梅高中; - 丹尼斯·雨果; - 德肖特·戈德弗罗伊: - 德肖蒙·朱迪思; - 亲爱的艾米琳; - 杜伊洛·克莱门斯; - PONTAVICE 路易斯; - 杜雅丁·维尼; - 埃利萨尔德·亚历山大; - 埃斯纳德·皮埃尔; - 莎拉·福佩尔; - 费利克斯·罗吉尔·米凯拉; - 弗朗克维尔·于格斯; - 加西亚·吉恩; - 德·吉弗里·艾蒂安; -格利帕·维克多; - 古尔梅伦·马蒂厄; - 吉勒敏在克洛希尔; - 游戏艾瑞尔; - 乔尔迪埃·伊索雷; - 不要阿尔法; - KERGOAT-PERRINET Océane ; - LA GORCE Thibault; - LABORDA Téva; - 拉布里特贾斯汀; - LABRUNE 利奥波德; - 英语恩佐; - 拉皮·罗曼; - LE BLEVENNEC Anaëlle; - 加洛本尼迪克特; - 十五个维克多; - 勒库克·塞泽尔; - 莱夫勒凡妮莎; - 苏菲传奇; - 莱昂·艾尔莎; - 路易斯·莱斯尤; -洛尔劳伦; - 光贾丝汀; - 马尔杰特·霍滕斯; - MARCILLET 西莉亚; - 马克·盖尔; - 马丁·威廉; - MONNERON 文森特; - 蒙伦·路易斯; - 蒙托亚·罗曼;
4. 研究专长和兴趣 a) 专业领域:材料科学、纳米催化、X 射线吸收光谱、原位 XAS 研究、高级 XAS 数据分析、机器学习方法、原子模拟技术(分子动力学、逆蒙特卡罗方法)、全局优化技术(模拟退火、进化算法)、线性代数方法(主成分分析、多元曲线分辨/盲源分离方法)、理论物理(介观电荷传输、量子计算、统计物理)、一些计算流体动力学经验。 b) 目前的研究兴趣:使用时间分辨 XAS 方法对材料进行实验研究,将 XAS 的结构和动力学信息与材料特性和功能联系起来。我对开发和应用先进的数据分析方法特别感兴趣,以充分利用 X 射线吸收光谱中编码的信息,并将实验测量与理论建模的结果相结合。 c) 参与同步辐射装置的实验; XAS 经验:我曾参加过 BESSY、DORIS、PETRA III 和 ANKA(德国)、SLS(瑞士)、ELETTRA(意大利)、SOLEIL、ESRF(法国)、ALBA(西班牙)、SSRL、NSLS-II APS(美国)同步辐射设施的 XAS 实验,包括荧光、透射模式和掠入射模式的测量、温度相关、压力相关 XAS 测量、催化过程的原位研究、RIXS 测量(APS、ESRF)、QXAFS 模式测量(NSLS-II、SOLEIL、SLS 和 DESY)、X 射线拉曼散射实验(ESRF)和光学色散装置测量(SOLEIL)。此外,我还在 SOLEIL 同步加速器和基于同步加速器的 XRD(NSLS II 和 DESY)方面有 FTIR 测量经验。目前,我还领导着一个团队,负责设计 PETRA III/IV 上由马克斯·普朗克学会资助的新光束线,该光束线致力于使用 XAS、XRD、SAXS 和 XES 方法对催化剂进行原位研究。此外,我和 FHI 的团队目前正在努力改造新的实验室 XAS 光谱仪,以对催化剂进行原位研究。我与他人合作撰写了 100 多篇关于 XAS 研究的论文,其中包括关于 XAS 数据分析高级方法的论文。 d) 参与重大研究项目:CatLab 研究平台的扩展(德国联邦教育与研究部(BMBF)和马克斯普朗克学会资助):与 Beatriz Roldan Cuenya 教授共同提议设计 PETRA 同步加速器的光束线前端站,2021 年至今美国国家科学基金会项目工具包,用于表征和设计 DMREF 计划下的双功能纳米颗粒催化剂(合作项目,涉及叶史瓦大学/石溪大学、德克萨斯大学奥斯汀分校、匹兹堡大学),2015 年 – 2018 年。EUROFUSION 项目 ODS 颗粒何时以及如何形成?- ODS 钢和高蠕变强度 ODS 钢的 X 射线吸收光谱和从头算建模(拉脱维亚大学与德国卡尔斯鲁厄理工学院和西班牙 CIEMAT 合作项目),2014- 2015 年。 EURATOM 项目 实验室规模的纳米结构 ODSFD 批次的生产和特性以及模型的实验验证(拉脱维亚大学与德国卡尔斯鲁厄理工学院和芬兰赫尔辛基大学合作项目,2013 – 2015 年。 e) 参加暑期学校和研讨会 1) 原子模拟技术暑期学校(2010 年 7 月 4 日 - 2010 年 7 月 25 日,意大利的里雅斯特); 2) 超快 X 射线科学与 X 射线自由电子激光器 (2011 年 3 月 29 日至 2011 年 4 月 2 日,德国汉堡 DESY);3) 第 32 届柏林中子散射学校 (2012 年 3 月 7 日至 2012 年 3 月 16 日,德国柏林 HZB)。4) HERCULES-2013(大型实验系统用户高级欧洲研究课程)(2013 年 2 月 24 日至 2013 年 3 月 28 日,法国格勒诺布尔 ESRF)。
Amara Raja(Amara)已(通过其子公司)与 Gotion 的子公司签署了一项技术许可协议,以获得磷酸锂离子 (LFP) 技术。我们认为,这符合 Amara 进军锂离子电池制造领域的战略,因为该公司一直在寻找与锂离子电池制造领域领先企业的合作。虽然 Amara 的新能源部门已经满足了两轮车、三轮车和电信领域的需求,但我们认为,成功掌握 LFP 技术将使其能够轻松地为电动光伏制造商提供电动汽车电池解决方案。Gotion 是电池解决方案领域的全球领先企业,与 Gotion 的合作将有助于公司掌握锂离子电池技术,这将使其易于建立超级工厂项目。最近,Amara 将其在挪威 InoBat 的股份增加到 9.32%,该公司从事电动汽车电池的研究、开发和生产。Amara 已经计划投资 200 亿卢比。未来两年新能源领域投资额将达到 2000-2200 亿卢比。
EAP 服务夸贾林医院团队欢迎岛上员工援助计划顾问 Kenneth Thomas。Ken 是持牌专业顾问和持牌临床酒精和药物顾问。客户可以从多元文化的角度接受有关精神健康障碍的教育,目标是逐渐接受并最终缓解症状。请联系 Ken,邮箱:kenneth.thomas@ internationalsosgs.us,电话:480-5362。如有疑问,请拨打 480-3550。设施壁球场代码。居民可以从 Grace Sherwood 图书馆的 MWR 服务台获取门代码。不会通过电话提供代码。如有疑问,请拨打 480-3331 联系 MWR。
Kim Burgess,行政服务部主任 Danny Lucas,开发服务部主任 Jim Iwanicki,工程服务部主任 Russell Wells,紧急服务部主任 Nicole Holt,人力资源总监 Donald Hipp,拘留中心主任 Earl Bostick,IT 总监 o 讨论 2025 年战略规划举措
超导体'' JB Mandal、B. Bandyopadhyay、P. Mandal、P. Choudhury、AN Das 和 B. Ghosh。《高温超导体研究》第24卷(Nova Science Publishers)中的一篇评论文章,由A. Narlikar 编辑。14.“(Hg 0.7 Cr 0.3 )Sr 2 CuO 4 的点接触研究”
