邀请会谈新加坡国立大学认知科学,心理学和AI研讨会系列系列2025年2月2025年赖斯大学,欧米茄PSI荣誉学会,2024年10月5日,《神经科学数学国际公约和AI国际公约》 2024年5月,5月5日1223年6月2023年6月2023年6月2022年2022年11月222日在增强地图上学习的RLDM研讨会,2022年6月2022年6月,斯坦福大学,心理学系,2022年5月,弗里塞姆弗里斯姆,哈佛大学,认知,大脑,大脑和行为SEMINAR,脑和行为SEMINAR,2022年2022年2月202日,麦克格尔大学,玛丽·麦克格尔大学。 Shenhav实验室2021年10月
在两个个体之间共享的长DNA序列,称为下降(IBD)段相同,是识别亲密和遥远的生物学关系的强大信号,因为它们仅在两人共享一个最近的共同祖先时才会出现。由于通常较低的覆盖率和高基因分型错误率,因此无法直接应用于当今基因组之间的IBD段的现有方法。我们提出了ANCIBD,这是一种识别作为Python软件包实现的人类ADNA数据的IBD段的方法。我们的方法基于一个隐藏的马尔可夫模型,该模型使用基于现代参考物质变化的现代参考面板估算的输入基因型概率。通过模拟和下采样实验,我们证明了ANCIBD可牢固地识别IBD段的时间超过8厘米的aDNA数据,其中至少为0.25倍平均平均全基因组测序(WGS)覆盖率(WGS)覆盖率至少为1倍,或至少1倍的平均富集实验,以实现大量使用ADNA SNP'1240'1240。此应用程序范围使我们能够筛选IBD段的ADNA记录的很大一部分,并展示了两个下游应用程序。首先,我们利用以下事实:预计生物亲戚将共享多个长期IBD段,我们确定了10,156个古欧亚的个人之间的亲戚,并记录了长途迁移的证据,例如,通过确定一对约1410公里的五级亲戚,在中部中部是Asia中的1410公里。第二,通过应用ANCIBD,我们揭示了从5000年前开始与草原牧民有关的血统传播到欧洲的新细节。我们发现,中部和北欧的第一批人都携带大量的草原 - 经济学,与有线的商品文化相关,与长IBD(12-25厘米)的高速率与庞蒂式 - caspian steppe的Yamnaya牧民共享,这是一个强烈的瓶颈和近来的生物学连接,这是一定的生物学连接 - 饰有绳索的人。我们还检测到有绳的人与与球状两栖培养物(GAC)和乌克兰相关的人之间长长的IBD段的共享,这些人是尚未携带类似草原的血统的铜时代农民。这些IBD链接在我们的分析中出现在所有有线的商品组中,这表明与GAC背景有关的个人必须在遗传混合物的早期产生重大的人口影响,从而导致欧洲各种有线的Ware群体。这些结果表明,检测ADNA中的IBD段可以在小规模上产生新的见解,这与了解人们的生活故事以及与大规模文化历史事件有关的宏观相关。
谨此提述本公司日期为二零二三年十月二十四日之公告,内容有关本集团与比尔及梅琳达·盖茨基金会(「基金会」)订立之资助协议。本公司欣然宣布,随着本公司基于病毒样颗粒(「VLP」)之脊髓灰质炎候选疫苗重组脊髓灰质炎疫苗(「CS-2036」)(「CS-2036项目」)之研发工作持续推进,本公司已与基金会订立新资助协议,根据协议,本公司将根据双方同意之要求,合共获得逾1,700万美元,以支持CS-2036候选疫苗之进一步开发,包括临床研究、工艺开发及扩大规模,以及CS-2036成分联合候选疫苗之开发。付款将视(其中包括)完成各项开发目标╱里程碑之付款时间表而定。
截至本公告日期,作为DTCP-HIB-MCV4的组成部分,该公司的Menhycia®疫苗是中国的第一批MCV4疫苗产品,已获得了新的药物认可并获得了商业化,DTCP婴儿在III期临床试验中是在III期临床试验中,并且是III阶段的疫苗。基于这些疫苗开发过程中积累的相关数据,该公司打算开发DTCP-HIB-MCV4合并疫苗,以满足对合并疫苗的市场需求,从而为公司建立差异化的竞争优势。
公司的MCV4适用于3个月至3岁(47个月)的婴幼儿,接种MCV4可引发针对ACYW135群脑膜炎奈瑟菌的免疫反应,用于预防ACYW135群脑膜炎奈瑟菌引起的流行性脑脊髓膜炎。在中国的临床试验中,MCV4的安全性和免疫原性良好。目前,MCV4正在印度尼西亚开展临床试验,以评估其在18至55岁人群中接种后的安全性和免疫原性,旨在扩大适用人群。公司的MCV4在印度尼西亚获得药品注册证,是公司国际化战略的重要成果,有助于提升公司的海外品牌知名度和国际影响力。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
弗里德赖希共济失调 (FRDA) 是一种常染色体隐性神经退行性疾病,由 frataxin (FXN) 基因内含子 1 中的 GAA 重复扩增引起,导致线粒体铁结合蛋白 frataxin 的表达显著降低。我们之前报告说,同基因造血干细胞和祖细胞 (HSPC) 移植可防止 FRDA 小鼠模型 YG8R 中的神经退行性。我们表明,挽救机制是由功能性 frataxin 从 HSPC 衍生的小胶质细胞/巨噬细胞转移到神经元/肌细胞所介导的。在本研究中,我们报告了使用 CRISPR-Cas9 系统进行 FRDA 自体 HSPC 移植的第一步。我们首次鉴定出一对 CRISPR RNA(crRNA),它们可有效消除人类 FRDA 淋巴母细胞中的 GAA 扩增,恢复 frataxin 表达的非病理水平,并使线粒体活动正常化。我们还优化了从健康和 FRDA 患者外周血中分离的 HSPC 中的基因编辑方法,并证明基因编辑细胞在体外和体内造血正常。该过程不会诱发细胞毒性作用或重大脱靶事件,但在基因编辑细胞中观察到 p53 介导的细胞增殖延迟。这项研究为将基因校正的 HSPC 自体移植用于 FRDA 的临床转化奠定了基础。
弗里德赖希共济失调 (FRDA) 是一种遗传性多系统疾病,主要由 frataxin (FXN) 基因内含子 1 中的 GAA 过度扩增引起。这种扩增突变在转录上抑制了 FXN,FXN 是一种线粒体蛋白,是铁代谢和线粒体稳态所必需的,导致神经退行性和心脏功能障碍。目前,FRDA 的治疗方案集中于通过药物干预改善线粒体功能和增加 frataxin 表达,但在临床试验中无法有效延缓或预防神经退行性病变。最近在 FRDA 动物和细胞模型中对体内和体外基因治疗方法的研究展示了其作为 FRDA 一次性疗法的前景。在本综述中,我们概述了 FRDA 基因治疗的当前和新兴前景,特别关注 CRISPR/Cas9 介导的 FXN 基因编辑作为恢复内源性 frataxin 表达的可行选择的优势。我们还评估了造血干细胞和祖细胞中的体外基因编辑作为潜在的自体移植治疗选择的潜力,并讨论了其在解决 FRDA 特定安全问题方面的优势,以实现临床转化。
在吉祥的 Paush Purnima 日子,大壶节开始了,超过 1.65 亿人在圣河中沐浴,恒河、亚穆纳河和神秘的萨拉斯瓦蒂河的圣河岸人头攒动,热闹非凡。来自全国各地的朝圣者心中怀揣信仰,手中拿着祭品,齐聚一堂,进行第一次圣浴。空中回荡着“Har Har Gange”和“Jai Shri Ram”的颂歌,营造出一种神圣的热情氛围。朝圣者们从午夜开始冒着刺骨的寒冷抵达桑加姆,他们的虔诚显而易见。他们裹着羊毛衣,头上顶着行李,在他们坚定不移的信仰面前,行李的重量似乎微不足道。 “当我在这里畅游时,感觉就像灵魂上的重担被卸下了,”来自拉贾斯坦邦的 65 岁朝圣者 Savitri Devi 从水中浮出水面,露出了平静的微笑。身着传统服饰的人们挤满了河岸,桑加姆河的河岸变成了五彩缤纷的景象。孩子们在浅水中玩耍,他们的笑声与咒语交织在一起,而老人则坐着祈祷,嘴里低声吟唱着神圣的赞美诗。年轻人的热情尤其引人注目,许多人用手机捕捉这些瞬间并立即分享。“我们很自豪能来到这里,与世界一起庆祝我们的文化,”来自阿拉哈巴德的 22 岁 Aniket Mishra 站在水边,手拿自拍杆说道。精神能量与大自然的恩赐相得益彰,前一天晚上还下了一场小雨