目的:评估 FDA 批准的两种药物在减肥方面的效果,这些药物用于 Al Dhafra 家庭医学中心 (DFMC) 的完美体重诊所 (PWC) 的肥胖患者,同时评估所用药物的安全性和成本。方法:我们进行了一项单中心队列观察性 16 周监测研究,研究对象为 DFMC PWC 中注射 Saxenda® 利拉鲁肽的患者和开放标签口服奥利司他 3 个月或更长时间的患者。研究对象为体重指数 (BMI) 为 27 kg/m2 或更高且至少患有一种体重相关合并症的参与者,以了解减肥药物的效果。利拉鲁肽患者每次就诊后都会监测体重变化,并从健康信息系统 (HIS) 中提取回顾性数据,用于监测服用奥利司他处方药的患者的体重。使用配对样本 t 检验和双样本 t 检验对连续变量的均值进行比较。结果:两组均包括来自埃马拉蒂(当地人口)的 170 名患者。监测了 Saxenda® 利拉鲁肽组的 94 名患者(平均年龄 34.8±10.27 岁),并审查了奥利司他组的 76 名患者的数据(平均年龄 46.91±10.78 岁)。使用 Saxenda® 利拉鲁肽的患者的平均体重减轻(WL)为 7.14±2.38 千克,显著高于使用奥利司他的患者(1.89±4.47 千克)。只有 14 名(15%)使用 Saxenda® 利拉鲁肽的患者出现暴露体重减轻反应,并继续进行 16 周的治疗方案(平均 WL - 7 千克),达到从基线开始 WL > 4% 的目标。在服用奥利司他并维持每日三次治疗方案 3-7 个月的 11 名患者(14.47%)中,未见明显的暴露体重减轻,因此未达到基线 5% 的目标 WL。结果显示,26.6% 的 Saxenda® 利拉鲁肽和 36.6% 的奥利司他从成本角度来看得到了适当的利用。安全性资料显示,只有 3 名患者(3.2%)因 Saxenda® 利拉鲁肽已知的胃肠道副作用而停止治疗。结论:该分析支持使用利拉鲁肽 3.0mg 进行体重管理,患者需遵守药物治疗以及饮食、运动和行为改变,因为除了先前已知的胃肠道副作用外,没有同时出现安全性/耐受性恶化。奥利司他没有显著的体重减轻,两种药物的依从性都较差。
ARINC 规范 429,“数字信息传输系统 (DITS)”,于 1977 年首次发布,自此成为航空公司最广泛使用的 ARINC 标准。选择此航空公司标准的名称是为了避免将其描述为“数据总线”。尽管 ARINC 429 是一种数据传输工具,但它并不符合数据总线的正常定义。典型的数据总线通过一组线路在多个点之间提供多向数据传输。ARINC 429 的简单单向数据流严重限制了这种能力,但相关的低成本和安装的完整性为航空公司提供了一个提供优质服务的系统,已有二十多年的历史。有关航空电子标准的更多信息,请访问 URL http://www.arinc.com/aeec。
国际巴尔干和近东大会系列汇集了来自世界各地的许多杰出的社会和行为科学研究人员。与会者有机会展示新的研究成果、交流信息和讨论当前问题。我们很高兴也很荣幸在北马其顿共和国奥赫里德举办 IBANESS 大会系列。所提交的论文是由审稿人从提交的论文中选出的。衷心感谢所有提交论文的人。我们希望通过交流所提交的研究和经验,大会将加强巴尔干和近东国家的交流和知识传播。 组织委员会 2022 年 11 月 26-27 日
任何航空公司在未事先从 COHOR 获得上述航班时刻表的情况下,不得运营从巴黎奥利机场出发或抵达巴黎奥利机场的航班,欧洲法规中规定的特殊情况或不可抗力情况除外。所有运营没有时刻表的航班或故意在分配时刻表以外的时间运营航班的航空公司都可能受到民航部长的处罚。在与违规航空公司进行听证会后,CAAC(民航行政委员会)可建议民航部长处以罚款,罚款金额最高可达 7,500 欧元,如果再次违规,罚款金额可能翻倍。巴黎奥利机场每年的总时刻表数量上限为 250,000 个,其中近 28,000 个时刻表预留给规划或公共服务航班。
研究目标 我团队的研究目标是控制有机半导体聚合物薄膜的宏观和纳米级形貌,以开发功能性、经济高效、便携且环境友好的有机电子设备。该小组旨在优化有机电化学晶体管(OECT),以提供用于神经病理学检测(联合国目标 3)和用于确定水是否可饮用的细菌检测(联合国目标 6)的新一代生物传感器。为了实现这些目标,该小组精心设计了新的高度结构化的聚合物薄膜,并了解驱动其化学和电化学掺杂的基本机制。我们将各种显微镜技术与先进的原位光谱和电表征技术相结合,以合理指导分子和器件工程。为了开展这项高度跨学科的研究,该小组正在与国际知名的(i)化学家合作,提供用于回答我们研究问题的最先进的性能聚合物,(ii)物理化学家,使用顶尖的表征仪器,以精确度澄清具体问题,以及(iii)生物学家,通过开发功能性生物传感器来评估我们的研究结果并提高技术就绪水平。
用于手术导航的无线惯性磁力仪 电磁跟踪 (EMT) 是临床环境中无视线仪器跟踪和导航的黄金标准。与 GPS 导航类似,医疗器械的位置在 MRI 或 CT 生成的患者身体“地图”上进行跟踪,而无需依赖 X 射线成像,因为 X 射线成像在持续使用的情况下对患者和临床医生都有害。当前的 EMT 技术在标准医疗手术室环境中性能下降。附近的金属物体会引入磁失真误差,从而损害患者体内的准确跟踪。此外,最关键的微创干预需要越来越小的仪器,例如腔内手术,其中使用人体的自然结构(例如静脉和气道)进入手术部位。因此,需要更小的 EMT 传感器来满足这些现代临床需求。我的目标是在小型化、无线操作和使用新的微型传感器更简单地集成到医疗设备方面推进 EMT 技术。利用现代硅制造技术,EMT 传感器的微型化将为将这些微型传感器集成到尖端导管设计中铺平道路。现有磁传感器和智能手机中常见的惯性测量功能的传感器融合将用于减轻材料磁畸变的影响。最后,将探索这些组合传感器单元的无线操作。这些传感器将集成到 Integer 开发的导管和新设备的临床前验证中,并将与法国斯特拉斯堡的图像引导手术研究所 (IHU) 和挪威特隆赫姆的工业和技术研究基金会 (SINTEF) 合作进行,我们的团队与他们有着密切的合作关系。这项研究将加速 EMT 在临床环境中的整合,并改善临床医生和患者的手术结果。
安大略省的能源部门是一个复杂的组织网络,负责能源网系统的不同方面。独立电力系统运营商 (IESO) 管理电力系统,以评估安大略省能源网的实时需求,并规划该省未来的能源需求。虽然该省目前向五个互连邻国(魁北克、马尼托巴、明尼苏达、密歇根和纽约)出口过剩能源 [1],但发展规划和技术支持预测表明,到 2026 年,该省对能源的需求将大于目前的供应量 [2]。作为回应,IESO 于 2023 年启动了长期 1 RFP 流程,目标是获得 4,000MW 的容量,以帮助满足 2027 年系统的需求 [3]。Hedley BESS 和 Elora BESS 项目是 RFP 流程的成功应用。