博士学位 :04 哲学硕士 :04 特殊成就/奖项 1. 当选研究员: (i) 研究员(2013 年),印度国家科学院(NASI),阿拉哈巴德 (ii) 研究员(2006 年),印度新德里国家农业科学院(NAAS) (iii) 研究员(2015 年),印度加尔各答西孟加拉邦科学技术学院(WAST) (iv) 研究员(2015 年),印度兽医免疫学和生物技术学会(ISVIB),印度 2.国际奖:01 (i) 澳大利亚政府颁发的奋进行政奖(2013 年),以表彰其在知识和技能共享方面的互利成就。 3. 国家奖项 (i) 印度政府 ICAR 为表彰在动物健康领域做出的杰出贡献而授予的 2001-2002 两年期 Rafi Ahmed Kidwai 奖 (ii) 印度政府 ICAR 为表彰在农业研究领域做出的杰出贡献而授予的贾瓦哈拉尔·尼赫鲁奖 (1996) (iii) 印度政府生物技术部国家助理奖 (1996)
KENNETH VILLAREAL Kenneth Villareal 是新墨西哥州科特兰空军基地空军作战测试和评估中心总部的实验主任。他领导并指导一个由六名文职雇员组成的办公室,该办公室为空军、战略发展规划和实验办公室以及空军特别感兴趣的其他客户提供独特的规划、快速评估和计划支持服务。AFOTEC/EX 强调应用空军研究实验室的实验技术、商用现货技术和其他非开发项目或 NDI,包括原型。量身定制的程序支持,包括实验测试规划和分析以及报告以满足客户的迫切需求,被视为 EX 的成功和客户满意度的重中之重。
通讯作者。能源经济研究与政策中心,会计、经济和金融系,社会科学学院,赫瑞瓦特大学,玛丽伯顿大厦,EH14 4AS,爱丁堡,英国。电子邮件:E.Ersoy@hw.ac.uk
HI5662 是一款双 8 位全差分采样流水线 A/D 转换器,具有数字纠错逻辑。图 14 描述了前端差分输入差分输出采样保持 (S/H) 放大器的电路。开关由内部采样时钟控制,该时钟是来自主采样时钟的非重叠两相信号 1 和 2 。在采样阶段 1 ,输入信号施加到采样电容器 C S 。同时,保持电容器 C H 放电至模拟地。在 1 的下降沿,输入信号在采样电容器的底板上进行采样。在下一个时钟相位 2 中,采样电容器的两个底板连接在一起,保持电容器切换到运算放大器输出节点。然后电荷在 C S 和 C H 之间重新分配,完成一个采样保持周期。前端采样保持输出是模拟输入的全差分采样数据表示。该电路不仅执行采样保持功能,还将单端输入转换为转换器核心的全差分输出。在采样阶段,I/Q IN 引脚仅看到开关的导通电阻和 C S 。这些组件的相对较小的值导致转换器的典型全功率输入带宽为 250MHz。
USB 2.0 高速 (USBHS) 模块 USB 2.0 高速 (USBHS) 模块可作为主机控制器或设备控制器运行。作为主机控制器,USBHS 支持通用串行总线规范 2.0 中定义的高速传输、全速传输和低速传输。作为设备控制器,USBHS 支持通用串行总线规范 2.0 中定义的高速传输和全速传输。USBHS 具有内部 USB 收发器,并支持通用串行总线规范 2.0 中定义的所有传输类型。USBHS 具有用于数据传输的 FIFO 缓冲区,最多可提供 10 个管道。根据外围设备或通信系统,可以为管道 1 至 9 分配任意端点编号。请参阅用户手册中的第 33 节“USB 2.0 高速模块 (USBHS)”。
io_set_cpg :执行 PLL 初始化 WDT.WRITE.WTCSR = 0xa51e; => WDT 停止,WDT 计数时钟设置 => 1/4096 x P 时钟(50MHz;20.97 毫秒) WDT.WRITE.WTCNT = 0x5a85; => 计数器初始设置 10 毫秒 CPG.FRQCR.WORD = 0x0303; => Clockin = 12.5MHz => I 时钟 = 200MHz,B 时钟 = 50MHz => P 时钟 = 50MHz CPG.MCLKCR.BIT.MSDIVS = 1; => MTU2S = 100MHz CPG.ACLKCR.BIT.ASDIVS = 3; => AD = 50MHz STB.CR3.BYTE = 0x02; => 模块待机清除 => HIZ、MTU2S、MTU2、POE2、IIC3、ADC0、保留(1)、FLASH STB.CR4.BYTE = 0xE2; => 模块待机清除 => SCIF3、保留(0)、CMT、保留(1)、EtherC STB.CR5.BYTE = 0x12; => 模块待机清除 => SCI0、SCI1、SCI2、SCI4、ADC1 pfc_init:执行 MTU2 初始化 ADC0.ADCR.BIT.ADCS = 0x0; => AD0 初始化 ADC0.ADANSR.BIT.ANS0 = 0x1; ADC0.ADANSR.BIT.ANS1 = 0x1; ADC0.ADANSR.BIT.ANS2 = 0x1; ADC0.ADANSR.BIT.ANS3 = 0x1; ADC0.ADBYPSCR.BIT.SH = 0x1; ADC1.ADCR.BIT.ADCS = 0x0; => AD1 初始化 ADC1.ADANSR.BIT.ANS0 = 0x1; ADC1.ADANSR.BIT.ANS1 = 0x1; ADC1.ADANSR.BIT.ANS2 = 0x1; ADC1.ADANSR.BIT.ANS3 = 0x1; MTU2S.TSTR.BYTE = 0x0; => 清除 MTU2S 计数器 MTU2S3.TCR.BIT.TPSC = 0x0; => MTU2S3 TCNT 清除禁用 MTU2S3.TCR.BIT.CKEG = 0x0; => MTU2S3 在上升沿计数 MTU2S4.TCR.BIT.TPSC = 0x0; => MTU2S4 TCNT 清除禁用 MTU2S4.TCR.BIT.CKEG = 0x0; => MTU2S4 在上升沿计数 MTU2S.TDDR = 1; => MTU2S 死区时间 MTU2S3.TGRB = 495; MTU2S3.TGRD = 495; MTU2S4.TGRA = 300; => PFC 输出 MTU2S4.TGRC = 300; => PFC 输出 MTU2S4.TGRB = 200; => PFC 输出 MTU2S4.TGRD = 200; => PFC 输出 MTU2S.TCDR = 500; => 三角波形设置 100K MTU2S.TCBR = 500; => 三角波形设置 100K MTU2S3.TGRA = 501; => 三角波形设置 100K MTU2S3.TGRC = 501; => 三角波形设置 100K MTU2S.TOCR1.BIT.PSYE = 0x1; => 切换输出 MTU2S.TOCR1.BIT.TOCS = 0x1; MTU2S.TOCR2.BIT.OLS3N = 0x0; => TIOC4D MTU2S.TOCR2.BIT.OLS3P = 0x1; => TIOC4B MTU2S.TOCR2.BIT.OLS2N = 0x1; => TIOC4C MTU2S.TOCR2.BIT.OLS2P = 0x0; => TIOC4A MTU2S.TOCR2.BIT.OLS1N = 0x0; => TIOC3D MTU2S.TOCR2.BIT.OLS1P = 0x1; => TIOC3B MTU2S3.TMDR.BIT.MD = 0xF; => 峰值时输出高电平 MTU2S.TOER.BIT.OE3B = 0x1; => TIOC3B 引脚输出 MTU2S.TOER.BIT.OE3D = 0x1; => TIOC3D 引脚输出
7. 尽管瑞萨电子致力于提高瑞萨电子产品的质量和可靠性,但半导体产品具有以一定比率发生故障和在特定使用条件下发生故障等特定特性。此外,瑞萨电子产品不采用抗辐射设计。请确保实施安全措施,以防止瑞萨电子产品发生故障或故障时造成人身伤害、火灾造成的伤害或损害以及社会损害,例如硬件和软件的安全设计(包括但不限于冗余、火灾控制和故障预防)、老化退化的适当处理或任何其他由您自行负责的适当措施,作为对您产品/系统的保修。由于单独评估微机软件非常困难且不切实际,请评估您制造的最终产品或系统的安全性。