线粒体移植是一种有前途的治疗方法,用于治疗由线粒体DNA突变引起的线粒体疾病,以及几种代谢性和神经性疾病。动物研究表明,线粒体移植可以改善细胞能量代谢,储存线粒体功能并防止细胞死亡。但是,需要解决挑战,例如将函数线粒体传递到体内正确的细胞,以及移植的线粒体的长期稳定性和功能。研究人员正在探索线粒体移植的新方法,包括使用纳米颗粒或CRISPR基因编辑。的基于移植线粒体的整合和功能的机制是复杂的,并且不完全理解,但是研究揭示了一些起作用的关键因素。在动物模型和人类试验中已经研究了线粒体移植的安全性和功效,但需要进行更多的研究来优化输送方法和评估长期的安全性和功效。使用线粒体移植的临床试验显示出不同的结果,突显了在该领域进行进一步研究的必要性。总而言之,尽管线粒体移植具有对各种疾病的治疗的巨大潜力,但仍需要更多的工作来克服挑战并评估其在人类试验中的安全性和功效。[BMB报告2023; 56(9):488-495]
酶抑制剂正在被探索为神经退行性疾病的潜在治疗方法。例如,乙酰胆碱酯酶抑制剂用于通过增加大脑中乙酰胆碱的可用性来改善阿尔茨海默氏病的认知功能。生物技术和酶工程:在生物技术过程中使用酶抑制剂来控制酶促反应并提高产品产量。通过选择性抑制或激活特定的酶,研究人员可以操纵代谢途径以有效产生所需的化合物。农业:酶抑制剂也在农业中发挥作用。除草剂通常是通过抑制杂草生化途径中的关键酶来起作用的,从而导致其在放弃农作物时的选择性消除。酶抑制剂是生物学研究中的宝贵工具。它们用于研究酶功能,信号通路和其他细胞过程。通过选择性抑制特定的酶,研究人员可以发现它们在各种生物学现象中的作用。酶抑制剂的发展面临与特异性,脱靶效应和潜在耐药性有关的挑战。平衡对高度特异性抑制剂的渴望与需要有效治疗的需求是药物设计的持续挑战[4,5]
剪接体是一种极其复杂的机器,在人类中由 5 种 snRNA 和 150 多种蛋白质组成。我们扩展了单倍体 CRISPR-Cas9 碱基编辑以靶向整个人类剪接体,并使用 U2 snRNP/SF3b 抑制剂 pladienolide B 研究了突变体。超敏替换定义了含有 U1/U2 的 A 复合物中的功能位点,但也定义了在 SF3b 解离后的第二化学步骤中起作用的成分中的功能位点。可行的抗性替换不仅映射到 pladienolide B 结合位点,还映射到 SUGP1 的 G-patch 结构域,该结构域在酵母中缺乏直系同源物。我们使用这些突变体和生化方法将剪接体解离酶 DHX15/hPrp43 鉴定为 SUGP1 的 ATPase 配体。这些数据和其他数据支持一种模型,即 SUGP1 通过在动力学阻滞下触发早期剪接体分解来促进剪接保真度。我们的方法为分析人类细胞中必不可少的机器提供了一个模板。
低成本 DNA 测序的普及使另一种将人类遗传学与神经系统疾病的特定基因驱动因素联系起来的方法——全基因组关联研究 (GWAS) 复活。通过比较患病个体与未患病(“对照”)人群的基因组成,可以确定增加患病可能性的风险因素。GWAS 导致发现特定基因的变异,包括 TREM2(髓系细胞 2 上表达的触发受体)和 GBA1(葡萄糖脑苷脂酶 1),分别是非孟德尔 AD 和 PD 的风险因素。在某些情况下,GWAS 结果突出了以前被低估的导致发病的机制。例如,与 AD 风险相关的遗传变异在髓系细胞(可能是小胶质细胞)中起作用的基因和增强子(基因组中控制基因表达的区域)中富集。这表明先天免疫细胞在 AD 中发挥着重要作用。因此,特定生物途径中风险变异的丰富可以加深我们对神经退行性疾病的机制理解,甚至可能指出新的治疗目标。
抽象的植物细胞经常遇到正常生长和发育的一部分,或响应诸如洪水等环境压力的一部分。近年来,我们对低氧反应基因表达的多层控制的理解已大大增加。在此更新中,我们对调节对低氧水平的反应的表观遗传,转录,翻译和翻译后机制进行了广泛的看法。我们强调了翻译后修饰(包括磷酸化),次级信使,转录级联反应以及来自线粒体和网状网状(ER)的逆行信号如何如何控制转录因子活性和低氧基因转录的控制。我们讨论了通过专注于主动和抑制性的染色质修饰和DNA甲基化的表观遗传机制,以调节对氧气供应减少的反应。我们还描述了当前对紧密调节mRNA翻译以协调缺氧下有效基因表达的共同和转录机制的知识。最后,我们在该领域提出了一系列杰出的问题,并考虑了如何对低氧触发的监管层次结构的分子起作用的新见解,这可能为开发洪水的作物铺平道路。
给药 • 抽取和给药 Gallium Ga 68 Gozetotide 注射液时,请使用无菌技术和辐射屏蔽。 • 根据校准时间和所需剂量计算所需给药量。 • 给药前,目视检查 Gallium Ga 68 Gozetotide 注射液中是否有颗粒物和变色。仅使用清澈、无色或最多略带黄色且没有可见颗粒的溶液。 • Gallium Ga 68 Gozetotide 注射液可以用无菌 0.9% 氯化钠注射液 USP 稀释。 • 在给患者给药前立即使用剂量校准器测定最终剂量。 • 注射 Gallium Ga 68 Gozetotide 注射液后,用无菌 0.9% 氯化钠注射液 USP 进行静脉冲洗,以确保完全输送剂量。 • 按照适用法规以安全的方式处理任何未使用的药物。 • 除非有禁忌症,否则可以在注射放射性示踪剂时使用预计在吸收时间内起作用的利尿剂,以潜在地减少放射性示踪剂在膀胱和输尿管中积累造成的伪影。
阿尔茨海默氏病是当今痴呆症的最常见原因,是一种神经退行性疾病,经常发生在老年人群中。的患病率提高。尽管如今尚未完全照亮阿尔茨海默氏病的病因,但在其形成中起作用的某些因素是已知的。在阿尔茨海默氏病的治疗策略中,胆碱能假设具有重要的途径。根据这一假设,在突触裂缝中制定了治疗策略,以增加乙酰胆碱水平降低,以增加两种胆碱酯酶抑制作用的乙酰胆碱酯酶和贝里利胆碱酯酶抑制。Rivastigmin,Galantamine和Donepezil目前用于治疗阿尔茨海默氏病。但是,这些药物的治疗时间和广泛的副作用特征需要新的治疗方法。该汇编是根据文献筛查制备的,以提供有关新药开发的作用,使用,效率和位置的信息,以治疗阿尔茨海默氏症胆碱酯酶抑制剂。
在克鲁兹锥虫感染期间,巨噬细胞吞噬寄生虫,并通过肿瘤细胞增多症去除凋亡细胞。巨噬细胞1(M1)会产生促弹性细胞因子和NO和Figts感染,而M2巨噬细胞是表达精氨酸酶1并在组织修复中起作用的允许性宿主细胞。M1和M2表型的调节可能会诱导或损害巨噬细胞介导的免疫力,以控制寄生虫的控制或持续性。在这里,我们重点介绍了巨噬细胞激活在对克鲁齐的早期免疫反应中的关键作用,该反应可防止急性感染期间的寄生虫,心脏寄生虫和死亡率升级。我们将讨论巨噬细胞激活和失活的机制,例如T细胞因子和胚细胞增多症,以及如何改善巨噬细胞介导的免疫力以防止寄生虫持久性,影响,炎症,以及Chagasic心肌疗法的发展。潜在的疫苗或治疗必须增强早期的T细胞巨噬细胞串扰和寄生虫控制,以限制寄生虫引起的心脏中炎症的致病结果。
热辐射代表了自然界的无处不在。作为主要能量和熵载体,热辐射在广泛的应用中起着根本重要的作用。在热光子学的新兴领域中,使用热光子结构(至少一个结构特征是波长或以下小波长量表)可以重塑与常规热发射器的热辐射,并为能源应用提供令人兴奋的机会[1] [1] [2]。热光子学现在正成为可再生能源研究的前沿,对节能,减少碳和可持续社会产生了影响。在纳米光学的特刊“可持续性热光子学”中,我们通过评论,观点和研究论文收集并突出了热光子学和相关可持续性应用的最新发展。该问题中包含的审查和观点提供了基于纳米素养的光则冷却的全面概述。Yoo等。 回顾了可切换辐射冷却策略的最新发展[3]。 基于不同的开关机制,例如润湿/干燥,机械刺激,热色素和电致色素反应,实施了自适应热管理,以实现稳定温度调节的要求。 Zhang等。 精确地指出了从实验室促进辐射冷却到实践时的问题和挑战[4]。 但是,对于大区域工业应用而言,设计和制造的复杂性是不起作用的。 Han等。Yoo等。回顾了可切换辐射冷却策略的最新发展[3]。基于不同的开关机制,例如润湿/干燥,机械刺激,热色素和电致色素反应,实施了自适应热管理,以实现稳定温度调节的要求。Zhang等。 精确地指出了从实验室促进辐射冷却到实践时的问题和挑战[4]。 但是,对于大区域工业应用而言,设计和制造的复杂性是不起作用的。 Han等。Zhang等。精确地指出了从实验室促进辐射冷却到实践时的问题和挑战[4]。但是,对于大区域工业应用而言,设计和制造的复杂性是不起作用的。Han等。透视图详细阐述了理论约束,光谱选择性的局限性,材料和结构设计的难度,不均匀的评估方案,商业化问题和可能的解决方案。白天辐射冷却需要对热辐射的光谱控制:太阳光谱中的同时高反射和大气窗中的高发射率[5]。多层光学堆叠,超材料和光子晶体,用于亚镜子白天辐射冷却[6],[7]。最近,聚合物和随机光子材料可以在热辐射的纳米光子控制中具有高的设计自由度和可扩展制造[8]。除了在太阳光谱和大气窗口的增强光谱选择性外,还赋予了越来越多的功能和工业可伸缩性。在本期特刊中,Zhao等。提出了双层辐射冷却涂层,通过用二氧化硅 /聚(乙烯基二氟乙烯 - 二甲基二甲基二氟丙烯)覆盖TIO 2 /丙烯酸树脂涂料,在可伸缩的工艺中呈现超氢肥料性能[9]。开发了基于回收的聚合物的无源辐射冷却材料,目的是用于可持续目标,而不是使用原始聚合物[10]。疏水性,鲁棒机械强度,耐用性和可伸缩性的组合,Wang等人。提出了一个双层PDMS/纳米,用于有效的被动白天辐射冷却[11]。与三维(3D)印刷技术集成在一起,Park等。Kim等。Kim等。合成的3D可打印的空心二氧化硅纳米颗粒用于亚镜头白天辐射冷却[12]。实验证明了基于聚丙烯硝基的纳米纤维(Nanopan)聚合热散热器[13]。增强的双面PV性能是通过纳米跨和金属背部反射器的波长选择性散射特性的组合获得的。Yang等人使用活跃的冷却技术突出显示适应性。提出了一种基于纳米多乙烯的Janus型辐射冷却膜,常规的辐射冷却和抑制的中红外发射,分别在顶部和底部获得[14]。Felicelli等。提出了由基于纤维素的棉纸和薄
摘要:我们引入了脑启发的模块化训练(BIMT),这是一种使神经网络起作用的方法更模块化和可解释。受到大脑的启发,BIMT将神经元嵌入几何空间中,并以与每个神经元连接长度成正比的成本增强损失函数。这是受到进化生物学中最低连接成本的想法的启发,但我们是首先将这一想法与培训神经网络结合起来的,具有梯度下降以供解释性。我们证明,BIMT发现了许多简单任务的有用的模块化神经网络,以符号公式,可解释的决策边界和分类特征以及算法数据集中的数学结构揭示了组成结构。在定性上,受BIMT训练的网络具有肉眼容易识别的模块,但经常训练的网络似乎更为复杂。定量,我们使用纽曼的方法来计算网络图的模块化; BIMT在我们所有的测试问题上都达到了最高的模块化。一个有前途且雄心勃勃的未来方向是应用提出的方法来了解视力,语言和科学的大型模型。
