摘要。给出了对俄罗斯乳酸启动器市场的当前状态的评估,这反映了对原材料的依赖,主要来自欧洲制造商。为了减少依赖性并确保在制裁期间确保粮食安全,俄罗斯联邦的科学和技术界已经设定了一项任务,以创建允许获得基于它们的高质量乳酸启动培养物和发酵产品的技术。本文讨论了乳酸开胃培养物的干燥,以增加存储条款和条件。脱水过程中的一个重要点是在开胃剂干残基中保存生物活性物质(乳酸生物,双歧杆菌)。考虑了起动培养物干燥的基本技术,提出了使用膜电加热器的替代技术。在制造的实验室支架上获得了乳酸启动培养物的实验动力学依赖性和干燥过程的方程。干燥的起动器培养物的实验室测试表明,生物活性物质的含量与起始材料,GOST RF和高度可恢复能力完全符合,这表明开发IR辐射技术的可行性并将其引入乳酸和乳酸原料的处理中。
未来电动飞机和混合动力飞机对电力的需求不断增加,机载系统的高功率电力转换研究工作一直在进行中。航空系统的安全关键性质使航空电力转换器的可靠性成为关键的设计考虑因素。本文研究了电力电子系统的可靠性,重点研究了关键子部件的寿命限制因素。为起动发电机驱动转换器建模了不同系统电压水平下的电压源功率转换器的可靠性。一个关键的观察结果是,Si IGBT 器件足以满足低压和中压系统(高达 540 V)的可靠性要求。在更高的系统电压(高于 540 V)下,使用 Si IGBT 进行设计需要多级拓扑。在恒定功率曲线驱动中,转换器直流链路中薄膜电容器的磨损故障对系统可靠性的影响最小。在没有增强电压降额的多级拓扑中,系统可靠性主要受宇宙射线引起的随机故障影响。仿真结果表明,在高系统电压 (810 V) 下,带有 SiC mosfet 的 2 L 拓扑在可靠性方面优于基于 Si IGBT 的 3 L 拓扑。
腌制是一种数百年历史的保存技术,它将新鲜蔬菜或水果变成浓郁,美味的美食。看似简单的过程背后是令人着迷的发酵科学。在本文中,我们将深入研究腌制的复杂性,探讨推动发酵过程的科学原理。从微生物的作用到发生的化学反应,我们将发现腌制背后的科学,并更深入地了解这种古老的方法如何将普通成分转化为烹饪宝藏。发酵:腌制的腌制的关键在于发酵过程。发酵是一种代谢过程,微生物(例如细菌或酵母)将糖转化为酸,气体或酒精。在腌制中,乳酸发酵是主要机制。这个过程不仅赋予了特征性的浓郁味道,而且还具有天然的防腐剂,从而延长了腌制产品的保质期。微生物的作用 - 微生物在发酵过程中起着至关重要的作用。乳酸细菌,例如乳酸杆菌,是涉及的主要微生物。这些细菌自然出现在水果和蔬菜的表面上,或者可以通过起动培养物引入。在发酵过程中,这些细菌将存在于农产品中的糖转化为乳酸,从而降低盐水的pH并创造酸性环境[1]。
摘要:沙门氏菌是鸡干性香肠(DFS)中的主要相关病原体。货架稳定的DF的安全性必须依赖于生产过程,这不仅应防止生长,而且应促进沙门氏菌的失活。该研究的目的是评估两种低酸鸡DF的生产过程中沙门氏菌的行为。通过挑战测试,即将沙门氏菌的鸡尾酒接种到肉糊中(6 loot 10 cfu/g),评估了在不同处理时间使用起动文化,纠正储存和高压加工(HPP)的影响(HPP)。通过成熟(10–15°C/16 D)和发酵加成熟(22°C/3 D d + 14°C/7 D),通过成熟(10–15°C/16 D)和小型(22°C/3 D + 14°C/7 D)详细阐述了培养基(FUET -TYPE,FT)和小(小吃,ST)口径的香肠。物理化学参数,并列举了沙门氏菌。将观察到的结果与文献中可用的预测模型进行的模拟进行了比较。在ft中,在生产过程中观察到沙门氏菌的略有下降,在ST中,在22°C下发酵期间发生了0.9-1.4 log 10的增加。因此,DFS安全必须基于过程温度和水活性的降低,这些因素可以用作基于伽马概念的预测模型的输入,作为生产者的有用决策支持工具。沙门氏菌致死性通过com-
摘要:最近,在鹅香肠的成熟过程中,注意到了由氨和醋味组成的缺陷。位于意大利北部伦巴第塔的工艺设施的生产商要求我们确定该缺陷的原因。因此,本研究旨在确定潜在的负责药物来破坏这种鹅香肠。使用“针头探测”技术通过感觉分析检测到腐败。但是,由于高氨和醋的气味,变质的香肠无法销售。添加的起动培养物并未限制或抑制由Brevis(主要种类)以及粪肠球菌和粪肠球菌和粪肠球菌代表的腐败微生物。这些微生物在成熟过程中生长,并产生了大量的生物胺,这可能代表了消费者的风险。此外,Lev。Brevis,是一种杂种乳酸菌(LAB),还产生乙醇,乙酸和香肠颜色的变化。在体外确认生物胺的产生。此外,如先前的研究中所观察到的那样,腐败的第二个原因可以归因于成熟过程中生长的霉菌。分离的菌株,纳尔吉藤菌(Penicillium nalgiovense)作为开胃菜培养物和植木菌(P. lanosocoerulum),是一种环境污染物,在肉类和壳体之间生长出来,产生了大量的总挥发性氮,负责在成熟区和索苏群中感知到的ammonia味。这是对斑鸡香肠中Brevis占主导地位的第一个描述。
摘要:发酵食品(例如桌子橄榄)是通过多年来改进的自发过程生产的,从而确保了最终产品的安全性和质量。The aim of the present work was to study the action of starter cultures of lactic acid bacteria ( Lacticaseibacillus rhamnosus GG ATCC53103, Levilactobacillus brevis ATCC8287, and Lactiplantibacillus plantarum ATCC14917) which were previously shown to have probiotic and antioxidant potential during the fermentation of natural Greek-style black在20℃的温度下,含有6%(w/v)NaCl的盐水中的橄榄(Kalamata),持续150天。在分子水平上,使用HPLC方法鉴定出每个发酵过程中的主要代谢产物。结果表明,代谢产物的浓度逐渐增加,在发酵第90天后发展了稳定的模式。此外,DL-P-羟基苯甲酸(OH-PLA)被确定为具有最高浓度的酚酸,与所选的起动培养物无关。在发酵的最后阶段(150天),还从橄榄表面提取了微生物基因组DNA,并使用Nanopore Minion™NGS工具进行了16S rRNA测序,从而实现了对微生物群落的全面分析。根据发现,最丰富的属是乳杆菌和leuconostoc。据我们所知,这是探索这些特殊发酵剂的首次研究。据我们所知,这是探索这些特殊发酵剂的首次研究。
引言更换现代汽车的起动电池时,必须观察到一些预防措施,例如:B. IBS(智能电池传感器)的重置,这对于新电池与车辆的正确相互作用是必需的。下面列出了下面的三个主要案例和相关的学习过程,安装新电池后必须进行。秋季1:新电池的学习会自动进行。在车辆中安装后,无需采取进一步的措施。制造商:FCA Group,PSA,Toyota,Volvo等。病例2:必须通过诊断工具来学习诊断工具。正确的过程已经在制造商的诊断系统和最常见的独立系统(Bosch,Gutmann,VCDS,Autel)中可用,并通过各种步骤领导机械师。如果需要输入串行代码,则该过程由测试仪突出显示(取决于情况,可能需要在代码之后输入0或创建某个代码 - Volt,Ampere,Ampere,Ampers的课程作为新电池的参考)。制造商:宝马,吉普,马自达,VAG等。案例3:必须在没有诊断工具的情况下学习新电池。在官方和独立诊断系统的技术数据中,列出了一个特定的过程,其中必须按一定顺序和时间按下不同的键。制造商:福特和其他人。注意:如果没有学习电池,则可以是各种车辆系统的操作(例如B.停止功能)影响并损害了其他电池的正确充电(如果有)。
1. 简介 在汽车行业,电气解决方案的高度集成是一大趋势 [1]。因此,行业面临着提供集成度更高、更可靠、更节能的设备的需求 [1-4]。这些设备应安装在汽车有限的空间内。这种内部空间限制以及不断增加的功率密度需要增强散热以在减小尺寸的同时提高性能 [2]。PCB 嵌入式技术是解决这些问题的绝佳解决方案。事实上,它通过优化互连、减小尺寸和重量以实现小型化来提高电源模块性能 [1, 5]。这种优化可降低寄生电感并获得更好的热管理 [1, 6, 7]。本文选择的一个应用示例是智能皮带驱动起动发电机。对于此应用,我们采用了 PCB 嵌入式技术。对于后一种情况,本研究涉及一种新电源模块概念的可行性,该概念包含四个 100 V Si MOSFET ST315N10F7D8,作为单个开关并联,高度集成在 48 V/400 A 电机中,一方面减小体积和重量,另一方面提高热管理和芯片粘接的机械强度。该技术基于将 Si MOSFET 集成到 PCB 内部,使用银浆烧结进行芯片粘接和预浸渍复合纤维层压。本文将重点描述更为坚固的组装工艺,随后对原型进行电气测试以展示其功能,而机械测试将展示其强度。2. PCB 嵌入式组装设计其原理是使用基于厚铜板的绝缘金属基板 (IMS) 来传输大电流并优化散热。芯片堆叠在两块铜板之间以便于嵌入。芯片和铜板之间的连接由银烧结工艺确保。电绝缘由层压在这些铜板之间的预浸渍复合纤维层实现(见图 1)。此外,芯片栅极烧结到铜箔上,并且可以通过镀通孔 (PTH) 访问该铜箔。
由先进技术证明了干燥。满足基本起始需求的电池,这些电池需要在使用过程中加入脱矿水,这些电池需要维护。充满电解质(包括酸包装)时,电池会被激活。由于单独的酸包装,可以在使用之前将其存储长时间。AGM通过使用“吸收玻璃材料”,电解质在电池内以更固体形式吸收。结果,与等效的干型电池相比,它具有更高的(起始)容量。此外,该电池可以以一定的角度安装,并且由于其封闭的系统而不需要用水充值。充满电解质(包括合适的酸包)时,电池会被激活。因此,在使用之前,可以将其存储长时间。SLA此AGM电池是从生产过程中激活的,使其在购买后立即运行。除了定期充电外,无需进一步维护。该防漏电池可以以90°的角度安装。凝胶要归功于电解质加厚到纳米凝胶,该电池的自我电量较低。此外,该电池的构造提供了比等效的干/AGM或SLA电池更多的功率。这使其非常适合具有较高功耗的摩托车,例如ABS,ESP和其他电子配件的摩托车。HVT HVT电池具有特殊的电池外壳,能够承受高温。 它非常适合赛车或越野摩托车。HVT HVT电池具有特殊的电池外壳,能够承受高温。它非常适合赛车或越野摩托车。其明显更高(起动)的容量和极端的振动阻力(由于压缩AGM板封装)使其非常适合重型V-Twin摩托车。这些摩托车通常具有更高的压缩比和更多可用配件,比类似的SLA电池需要更多的功率。LFP LifePo4技术比铅酸电池具有多个重要优势,包括其轻巧(比铅酸电池轻2/3),较长的寿命(2000电荷周期),最小的自我放电,快速充电以及可以安装在任何位置的能力。
电气化是交通运输行业不断发展的范式转变,旨在实现更高效、性能更高、更安全、更智能和更可靠的车辆。事实上,从内燃机 (ICE) 转向更集成的电动动力系统的趋势很明显。非推进负载,如动力转向和空调系统,也正在电气化。电动汽车包括多电动汽车 (MEV)、混合动力电动汽车 (HEV)、插电式混合动力电动汽车 (PHEV)、增程式电动汽车 (REEV) 和全电动汽车 (EV),包括电池电动汽车 (BEV) 和燃料电池汽车 (FCV)。本书首先介绍汽车行业,并在第 1 章中解释电气化的必要性。并强调了与电信行业等其他行业的相似之处。第 1 章还解释了范式转变如何从 MEV 开始,由 HEV 确立,由 PHEV 和 REEV 获得动力,并将由 EV 完成。第 2 章和第 3 章分别介绍了传统汽车和 ICE 的基本原理。第 4 章至第 7 章重点介绍电动汽车的主要部件,包括电力电子转换器、电机、电动机控制器和储能系统。第 8 章介绍了混合电池 / 超级电容器储能系统及其在先进电驱动汽车中的应用。第 9 章介绍了应用于低压电气系统的非推进负载的电气化技术。第 10 章介绍了 48 V 电气化和皮带传动起动发电机系统,第 11 章和第 12 章分别介绍了混合动力传动系统和 HEV 的基本原理。第 13 章重点介绍插电式汽车所需的充电器。第 14 章研究了 PHEV。第 15 章介绍了 EV 和 REEV。此外,第 16 章介绍了车辆到电网 (V2G) 接口和电气基础设施问题。最后,第 17 章讨论了先进电力驱动汽车的能源管理和优化。本书旨在成为一本综合性的教科书,涵盖先进电力驱动汽车的主要方面,适用于工程专业的研究生或高年级本科生课程。每章都包括各种插图、实例和案例研究。对于对交通电气化感兴趣的工程师、管理人员、学生、研究人员和其他专业人士来说,本书也是一本关于电动汽车的易于理解的参考书。我要感谢 Taylor & Francis/CRC Press 员工的努力和帮助,特别是 Nora Konopka 女士、Jessica Vakili 女士和 Michele Smith 女士。我还要感谢蒋伟生先生为准备本书的许多插图所做的努力。