引入尽管居住在具有高重复密度的域中,但果蝇Melanogaster muller f元素基因还是在与正念基因相同的定量范围内表达(Riddle等人。2012)。比较Muller F和D元素基因的转录起始位点(TSS)附近的基序的类型和分布可以帮助阐明使Muller F元素基因在异性域中起作用的因素。主题分析的第一步是产生TSS的高质量注释,以定义搜索保守基序的区域。TSS的比较注释比编码区域的注释更具挑战性,因为5'和3'未翻译区域(UTR)的发展比编码区域更快,并且提供了支持注释的外部证据较少。例如,大多数基因查找器仅预测编码区域,而RNA-seq读取覆盖率数据通常没有提供足够的证据来推断TSS的精确位置。因此,与编码区域的注释相比,TSS的注释具有更高的不确定性程度。在某些情况下,我们可能只能定义一个可以找到TSS的基因组区域。本演练将说明使用D. biarmipes muller f element Project contig35 [8月。 2013(GEP/DOT)组件]。
对TFBS间距配置的比较分析以及相对于体内TSS和体外实验条件的距离。tfs分为Y轴的家庭和类,颜色与PlantTF级超类3相对应。TSS以0 bp为中心,并均匀地定向右侧。每行右侧的数字表示分析中使用的样本数量。浅灰色颜色的行表示相应的TF家族缺乏数据。tfbss以与TSS相同的方向为方向而定,指向右侧的蓝色箭头表示,而相对于TSSS的TFBS朝着相反的方向表示的,用指向左侧的红色箭头表示。plindromic TFBS由紫色钻石表示。颜色的强度反映了平均z得分,固体颜色代表更高的分数和更透明的颜色代表得分较低。
CRISPR 干扰 (CRISPRi) 是一种在哺乳动物细胞中沉默基因的高效方法,它采用酶失活形式的 Cas9 (dCas9) 与一个或多个与靶基因转录起始位点互补 20 个核苷酸 (nt) 的向导 RNA (gRNA) 复合。此类 gRNA/dCas9 复合物与 DNA 结合,阻碍目标基因座的转录。在这里,我们提出了一种替代的基因抑制策略,即使用活性 Cas9 与截短的 gRNA (tgRNA) 复合。Cas9/tgRNA 复合物与特定靶位点结合而不会触发 DNA 切割。当靶向转录起始位点附近时,这些短的 14-15 nts tgRNA 可有效抑制果蝇体细胞组织中几种靶基因的表达,而不会产生任何可检测到的靶位点突变。 tgRNA 在与 Cas9-VPR 融合蛋白复合时还可以激活靶基因表达或调节增强子活性,并且可以整合到基因驱动中,其中传统 gRNA 维持驱动,而 tgRNA 抑制靶基因表达。
研究表明,DDX5、XRN2 和 PRMT5 可以在少数基因组位点上解析 RNA 聚合酶 II 转录终止位点处的 DNA/RNA 杂合体 (R 环)。在此,我们使用经典的 DNA/RNA 免疫沉淀和高通量测序 (DRIP-seq) 对受 DDX5、XRN2 和 PRMT5 调控的位点进行全基因组 R 环定位。我们在缺乏 DDX5、XRN2 和 PRMT5 的 U2OS 细胞中观察到转录位点处数百到数千个 R 环增益和丢失。R 环增益是位于基因富集区域的高度转录基因的特征,而 R 环丢失则在低密度基因区域观察到。DDX5、XRN2 和 PRMT5 在转录终止位点共享许多 R 环增益位点,这与它们在 RNA 聚合酶 II 转录终止中的协调作用一致。 DDX5 缺失的细胞在转录起始位点附近具有独特的 R 环增益峰,这些峰与 siXRN2 和 siPRMT5 细胞的 R 环增益峰不重叠,表明 DDX5 在转录起始中发挥独立于 XRN2 和 PRMT5 的作用。此外,我们观察到 siDDX5、siXRN2 和 siPRMT5 细胞中基因转录起始位点附近某些位置的累积 R 环导致反义基因间转录。我们的研究结果确定了 DDX5、XRN2 和 PRMT5 在 DNA/RNA 杂交调控中的独特和共同作用。
在众多使 lncRNA 功能失活的技术中,基于 CRISPR 的基因组编辑脱颖而出,成为应用最为广泛的技术。这种强大的工具使研究人员能够进行精确的基因修饰,为 lncRNA 功能敲除提供了两种主要策略:去除启动子和第一个外显子以及插入终止前 poly(A) 信号。每种方法都有各自的优点和挑战。例如,虽然启动子和外显子的去除可以有效地消除 lncRNA 表达,但它可能会无意中影响邻近基因。相反,插入 poly(A) 信号可以有效地停止转录,但如果使用替代的转录起始位点,则可能无法完全消除 lncRNA 功能。了解这些细微差别对于设计可靠的实验和准确解释结果至关重要(Lyu 等人)。
卡洛斯·阿尔瓦拉多·阿科斯塔 威廉和琳达·斯蒂尔研究员,斯坦福 Bio-X SIGF 结构生物学 导师:Joseph Puglisi(结构生物学)和 Zev Bryant(生物工程) 揭示扫描的动力学和机械化学调控 通过翻译进行蛋白质合成是生命的基本和必要过程。具体而言,翻译起始决定了解码的阅读框架,并且在各种疾病状态下经常失调。卡洛斯的目标是了解扫描背后的调控;核糖体和真核起始因子 (eIF) 定位翻译起始位点的过程。起始是动态的,涉及核糖体和 eIF 的快速运动,因此许多这些动态仍然隐藏在集合平均值之下。为了克服这些挑战,他的计划利用单分子动力学和机械化学测量的组合来揭示机械细节。
图 1. 现有 Cas12a CRISPRa 技术的评估。A) 采用两种不同的 Cas12a 核酸酶失活突变的 CRISPRa 构建体的比较。通过转导五天后表达 CD4 的细胞百分比来测量激活程度。B) 针对采用直接与 dCas12a (D908A) 连接的 TAD 组合的 12 种 CRISPRa 构建体变体,以基线表达为标准对 CD4 平均荧光强度 (MFI)。C) 示意图描绘了基于流式细胞术的平铺筛选的概览,该筛选用于识别其他活性 Cas12a CRISPRa 指南。D) 根据指南靶位点相对于 CD4、CD26、CD97 和 CD274 的转录起始位点 (TSS) 的位置绘制了每个指南在技术重复中的绝对最小 LFC 的 Z 分数。
图1 |对发展中的人类新皮层的多摩变调查。a,本研究中使用的样品的描述。b,snmultiome数据的UMAP图,显示了33种细胞类型的分布。c,UMAP图显示了年龄组的分布(左)和区域(右)。d,跨发育阶段和皮质区域的单个细胞类型的比例。条是由细胞类型颜色编码的,其传说可以在面板a中找到。 E,左,单个细胞类型中的签名转录因子(TF)的点。中间,汇总的染色质可及性概况在跨类型的签名TFS启动子上。蓝色箭头代表每个TF的转录起始位点和基因体。正确,跨细胞类型的标志性TF的归一化Chromvar基序活性的热图。
我们开发了Ont-Cappable-Seq,这是一种专门的长阅读RNA测序技术,允许使用纳米孔测序[1]对主要的,未经处理的RNA进行端到端测序。我们应用了Ont-Cappable-seq研究一组噬菌体,提供了病毒转录起始位点,终结器位点和复杂的操纵子结构的全面基因组图,这些结构细调了基因表达。许多发现的启动子和终结者都是新颖的,尚未被识别或预测。新的启动子和终结器的强度差异很大,使其成为新合成DNA电路的理想选择。在程度上,由Ont-Cappable-Seq提供的更精致的操纵子组织可以给基因功能提供新的提示,并启用更好的知情噬菌体工程方法。ont-cappable-seq是一种更好地了解噬菌体生物学和推动合成生物学的有力方法。