我们应对行人模拟中的内容多样性和收获性的挑战,以驱动方案。最近的行人动画框架具有重要的限制,其中他们主要关注轨迹[48]或参考视频[60]的内容,因此忽略了这种情况下人类运动的潜在多样性。这种限制限制了产生行人行为的能力,这些行为表现出更大的变化和现实动作,因此重新严格使用其用法,为驾驶模拟系统中的其他组件提供丰富的运动内容,例如,突然改变了自动驾驶汽车应响应的运动。在我们的方法中,我们努力通过展示从各种来源获得的各种人类动作(例如生成的人类运动)来超越限制,以遵循给定的轨迹。我们的框架的基本贡献在于将运动跟踪任务与轨迹结合到以下,这可以跟踪特定运动零件(例如上半身),同时遵循单个策略的给定轨迹。以这种方式,我们在给定情况下显着增强了模拟人类运动的分歧,以及内容的可控性,包括基于语言的控制。我们的框架有助于生成
WPT系统的耦合系数公式为:$$ k = \ frac {m} {\ sqrt {l_t \ times l_r}} $$ ..WPT的效率随耦合系数的提高。当一个线圈的所有磁通线切开第二个线圈的所有磁通线时,就会发生完美的耦合(k = 1),从而导致相互电感等于两个个体电感的几何平均值。这会导致满足关系$$ \ frac {v_1} {v_2} = \ frac {n_1} {n_2} $$的感应电压。图11提出了一种动画可视化,展示了磁通密度对发射器和接收器线圈之间气隙距离变化的响应。参数AC磁研究生动地证明了反相关关系:随着气隙距离的增加,磁通量密度达到二次线圈的降低,反之亦然。
普通的英语摘要背景和研究的目标是起搏器是一种小型电气设备,用于治疗某些异常的心律(心律不齐),可能会导致您的心脏跳动太慢或错过跳动。在手术过程中,正在接受心脏直视手术的Harefield医院的所有患者均插入了临时的起搏器,因为电导传导干扰很常见。暂时的起搏管理可能会变得复杂,因为某些参数会迅速变化,并且无法对起搏器设置进行编程,从而导致较低的血压或危险的心律。因此,临时起搏器需要日常检查。但是,英国的临时起搏器管理中的标准化培训有限,没有模拟器培训。目的:1。创建一个起搏模拟器来培训医生如何最好地管理和调整临时起搏器2。建立一个自动警报系统来检测不良的起搏器设置,并清楚地显示如何正确调整设置
注意:介绍部分是您的一般知识,不应将其视为政策覆盖标准。
摘要:人类诱导的多能干细胞(HIPSC)衍生的心肌细胞提高了从广泛的人类疾病中产生多能干细胞的可能性。在心脏病学领域中,HIPSC已被用来解决原发性心律不齐的机械基础和对药物安全的研究。这些研究主要集中在心房和心室病理上。顺便说一句,已经开发出许多基于HIPSC的心脏分化方案来区分心房或心室样的心肌细胞。很少有方案成功地提出了获得HIPSC衍生的心脏起搏器细胞的方法,尽管从窦淋巴结中的人体组织的可用性非常有限。在进一步了解我们对窦淋巴结病理生理学基础机制和测试针对Sinoatrial节点功能障碍的创新临床策略方面,提供类似起搏器样细胞的体外来源至关重要(即生物学改进者和基于遗传学和药理学的治疗)。在这里,我们总结并详细介绍了目前可用的方案,用于获得患者来源的起搏器样细胞。
摘要 — 生物技术和微电子技术的不断进步不断推动着有源植入式医疗设备(如起搏器)的小型化和功耗极限。植入式起搏器是电池供电的嵌入式系统,其自主性是延长设备寿命的重要制约因素。然而,起搏器的处理器消耗了大部分电池能量,因为它必须实时分析心脏活动。因此,选择合适的 CMOS 技术来制造处理器是至关重要的一点。在此背景下,本文提出了一种主要估算基于 ARM 的处理器功耗的方法。该方法已应用于意法半导体的三种制造技术。仿真结果表明,在温度为 27°C 的情况下,对于 HCMOS9A (1.2 V)、CMOS065 (1 V) 和 FDSOI (1 V) 技术,Cortex-M0+ 消耗的平均漏电功率分别为 300 nW、136 nW 和 486 nW,有效能量分别为 398 µW/MHz、49.9 µW/MHz 和 20.3 µW/MHz。但是,通过将电源电压降低至 0.8 V,FDSOI 技术可以获得与 CMOS065 类似的漏电功耗。最后,在功耗、面积和价格标准方面,CMOS065 似乎是在功耗、面积和成本方面提供最佳折衷的技术,即使温度升高 10°C 会导致这三种技术的平均漏电功率增加 30% 至 54.5%。
月份; p = 0.015,p = 0.033,p = 0.041;早产次:1个月时为6.8±2.3%,3个月时为7.1±2.1%,在6个月时为7.2±1.9%; p = 0.015,p = 0.022,p = 0.031)。AHRE患病率从1个月的9.7±2.3%增加到3个月时的18.1±4.1%,在6个月时为23.3±5.9%。但是,这些关联在6个月后减少,在1年和2年时持续较少。接收器工作特征曲线分析确定了1个月的94.5%心房起搏百分比截止比例,敏感性为68%,特异性为82%[曲线(AUC)下的面积(AUC):0.806,P <0.001],在3个月时截止94%,敏感性和特异性为68%和901%,<0.8001,<0.8001。对于模式开关发作,1和3个月的1.5截止值分别产生73%和74%的敏感性,分别为99%和98%(AUC:0.890和0.895和0.895,p <0.001)。
摘要 目的:心动过缓是由于心脏自律性受抑制、复极化延长或传导减慢所致。ERG 通道介导心脏动作电位中的复极化电流 I Kr,而 T 型钙通道 (TTCC) 参与哺乳动物的窦房起搏点和房室传导。斑马鱼已成为人类心脏电生理学和疾病的宝贵研究模型。在这里,我们研究了 ERG 通道和 TTCC 对斑马鱼幼虫起搏点和房室传导的贡献,并确定了引起房室传导阻滞的机制。方法:在心脏中表达比率荧光 Ca 2 + 生物传感器的斑马鱼幼虫用于测量体内跳动心脏的 Ca 2 + 水平和节律,同时测量收缩和血流动力学。房室延迟(心房和心室 Ca 2 +瞬变开始之间的时间)用于测量脉冲传导速度,并区分慢传导
永久性起搏器植入适用于以下任何一种情况:• 有症状的窦房结功能障碍,证据如下:◦ 有记录的窦房结功能障碍,包括以下之一:▪ 窦性心动过缓,心率 <50 次/分钟▪ 窦性暂停 >3 秒◦ 可归因于窦房结功能障碍的症状,包括以下之一:▪ 晕厥或先兆晕厥▪ 心力衰竭症状▪ 劳力性疲劳和运动耐受力受损• 心率 <40 次/分钟的窦性心动过缓和可能与心动过缓相关的症状• 有症状的窦性心动过缓(如上所述)是基本医疗管理的结果,持续治疗具有临床必要性• 如上所列的可归因于心动过缓的症状和心动过缓综合征的证据(窦性心动过缓、异位心房心动过缓或窦性暂停与心房扑动或心房颤动交替出现)