本文提供了有关起落架结构健康监测 (SHM) 系统开发的信息,该系统通过直接负载测量以及支柱维修检测算法提供预测/诊断 HUMS 功能。该系统通过将新传感器集成到起落架组件中来提供先进的监测技术。直接负载测量方法是当前跟踪机身起落架系统和机身支撑结构疲劳损伤方法的范式转变,这些方法依赖于 SHM 设备以各种采样率在机上记录的飞机参数数据收集。起落架 SHM 提供直接负载测量、重量/平衡计算以及对起落架组件执行基于条件的维护 (CBM) 的能力。NAVAIR 与 ES3 签订合同,通过小型企业创新研究 (SBIR) 计划(通过 N121-043 主题的第二阶段奖励)支持起落架 SHM 的开发。提议的解决方案将直接转移到其他海军、军用和商用飞机平台。本文将讨论 HUMS 和 CBM 领域的以下主题:(1) 用于直接负载测量的先进起落架传感器;(2) 将直接负载监测数据融合到疲劳寿命评估中;(3) 利用支柱维修检测算法实现飞机维护的范式转变;(4) 系统验证和确认;(5) 安全和维护效益。频谱开发和使用监测领域的先前工作通常侧重于飞机结构,将假设转化为起落架组件,而无需任何直接测量。使用监测的好处也可以用于起落架。直接载荷测量能够延长使用寿命、根据实际载荷移除部件、提高安全性、增加飞机可用性,并将 CBM 数据纳入维护实践,从而节省维护成本。本文通过对在高技术就绪水平 (TRL) 下适用于严酷起落架环境的传感器进行小型化,推动了最新技术的发展。
克兰菲尔德大学工程学院 研究型理学硕士 学年 2011 - 2012 YANG YANG 飞机起落架伸缩控制系统诊断、预测和健康管理 导师:Craig lawson 博士 2012 年 2 月 © 克兰菲尔德大学 2011。保留所有权利。未经版权所有者书面许可,不得复制本出版物的任何部分。
外面很黑,而且越来越黑。鸟儿栖息,汽车前灯亮着,但这是春天的早晨 09:30……2015 年 3 月 20 日星期五,北欧出现了令人惊叹的日偏食。这深刻地提醒我们太阳系的力量和威严。也许命运注定了,这期《航空测试国际》杂志将独家采访朱莉·克莱默·怀特,她是深太阳系载人猎户座项目的高级工程师。2014 年 12 月 5 日,猎户座飞船搭载德尔塔 IV 重型火箭从卡纳维拉尔角发射升空:这是一次绕地飞行 2 圈、持续 4 小时的飞行,测试了许多对安全至关重要的系统,包括发射和高速再入系统,如航空电子设备、姿态控制、降落伞和隔热罩。未来,猎户座飞船将搭载美国宇航局的新型重型火箭太空发射系统发射。这次试飞标志着太空旅行的新纪元。这表明了迈出这一步的极其重要的决心。“我是在 1985 年挑战者号航天飞机悲剧的阴影下加入 NASA 的,”Kramer 说。“我亲眼目睹了人们致力于解决当天出现的问题并确保不再发生这种事情的决心。从那时起,对 NASA 努力实现的目标(工程卓越和诚信)的热情成为了我所做的一切的试金石。我知道这些人生教训并不是 NASA 独有的。但要具备这些价值观,并注重团队合作和个人
摘要 模态分析在设计中用于确定结构或机械零件的振动特性,即固有频率和振型。模态分析是一种线性分析,可以是预应力结构的模态分析,也可以是循环对称结构的模态分析。它是谐分析、瞬态动力学分析和谐分析的出发点。利用ANSYS有限元分析软件,以A-10攻击机飞机起落架为研究对象,采用常用的Block Lanczos法计算出起落架固定边界条件下的前四阶固有频率和振型均在48Hz左右,从而为起落架的设计和改进提供可靠的依据。关键词:A10攻击机起落架;有限元法;Block Lanczos法;模态分析。
克兰菲尔德大学工程学院 研究型理学硕士 学年 2011 - 2012 YANG YANG 飞机起落架伸缩控制系统诊断、预测和健康管理 指导老师:Craig lawson 博士 2012 年 2 月 © 克兰菲尔德大学 2011。保留所有权利。未经版权所有者书面许可,不得复制本出版物的任何部分。
5. 需求分析_________________________________________________ 18 5.1. 唯一标识 _________________________________________________ 18 5.2. 传感器数据 _____________________________________________________ 18 5.3. 系统和网络 _____________________________________________ 22 5.3.1. 数据存储要求 ______________________________________ 22 5.3.2. 传感器数据处理 ________________________________________ 22 5.3.3. 数据检索 __________________________________________________ 22 5.3.4. 数据通信_____________________________________________ 23 5.3.5. 电源管理 _____________________________________________ 23 5.3.6. 系统可扩展性 _____________________________________________ 23 5.3.7. 系统耐用性 _____________________________________________ 23 5.3.8. 安全问题 _______________________________________________ 23 5.4. 环境限制 ____________________________________________ 24 5.5.解决方案选择标准 ______________________________________________________ 25
odu.edu › NASA-99-ceas-lgh PDF 作者:LG Horta · 被引用次数:5 — 作者:LG Horta · 被引用次数:5 HAVE BOUNCE" was developed to simulate the dynamic response of military aircraft over ... such as might occur after a catapult during an aircraft carrier.
在运行过程中,现代航空发动机部件,尤其是高压涡轮 (HPT) 叶片,要经受越来越苛刻的运行条件。此类条件会导致这些部件经历不同类型的时间相关退化,其中之一就是蠕变。开发了一种使用有限元法 (FEM) 的模型,以便能够预测 HPT 叶片的蠕变行为。一家商业航空公司提供的特定飞机的飞行数据记录 (FDR) 用于获取三个不同飞行周期的热数据和机械数据。为了创建 FEM 分析所需的 3D 模型,扫描了 HPT 叶片废料,并获取了其化学成分和材料特性。将收集的数据输入 FEM 模型,并运行不同的模拟,首先使用简化的 3D 矩形块形状,以便更好地建立模型,然后使用从叶片废料中获得的真实 3D 网格。观察到了位移方面的总体预期行为,特别是在叶片的后缘。因此,给定一组 FDR 数据,这种模型可用于预测涡轮叶片寿命。© 2016 作者。由 Elsevier B.V. 出版。同行评审由 PCF 2016 科学委员会负责。
克兰菲尔德大学工程学院 研究型理学硕士 学年 2011 - 2012 YANG YANG 飞机起落架伸缩控制系统诊断、预测和健康管理 指导老师:Craig lawson 博士 2012 年 2 月 © 克兰菲尔德大学 2011。保留所有权利。未经版权所有者书面许可,不得复制本出版物的任何部分。
摘要:起落架是飞机的重要结构单元,它确保飞机在地面上安全起飞和降落。根据飞机的类型和大小,起落架有多种布置方式。最常见的类型是三轮式布置,由一个前起落架单元和两个主起落架单元组成。即使在正常着陆操作期间,重载荷(等于飞机的重量)也要由起落架吸收。反过来,要提供接头,使得重集中载荷首先由机身承受,然后分散到周围区域。通常,重集中载荷通过凸耳接头承受。因此,在飞机结构的研发中,设计一种在静态和疲劳载荷条件下防止失效的凸耳接头非常重要。 关键词:起落架类型和布置。