是在 2020-2099 年的整个变暖时期进行评估的。随着温度升高,密度高度也会增加。由于场地海拔升高或温度升高,处于高密度高度的飞机会经历与高海拔相同的大气密度,尽管飞机飞得低得多。与低海拔相比,高海拔的飞行条件更差,因此在高密度高度飞行的飞机性能会下降。因此,上一节中定义的每个密度高度阈值都表示 C-17 性能下降的高度,因此必须定义新的最大起飞重量。
一架双引擎飞机经认证的 MTOM 和 MLM 分别为 58000 千克和 55000 千克。这架飞机的起飞重量限制是多少? PLTOM 61000 千克 PLLM 54000 千克 MZFM 36000 千克 运行重量 55000 千克 行程燃油 30000 千克 应急燃油 行程燃油的 5% 替代燃油 500 千克 最后储备 500 千克 飞行时间 3 小时 燃油消耗量 每台发动机每小时 500 千克 有效载荷 41500 千克 58000 千克 61000 千克 56145 千克 56545 千克
● 基于世界上最先进的平台和远程领先者,A350-1000 由劳斯莱斯 Trent XWB 97K 发动机提供动力 o 它提供无与伦比的运营灵活性和效率,可靠性高(乘客版为 99.5%)- 最新技术,最低运营成本 o 具有优化的机身长度以进行货运操作,并配有大型主甲板货舱门 o 超过 70% 的机身由先进材料制成,与直接竞争飞机相比,起飞重量减轻 30 吨 ● A350F 服务于大型货机类别的所有货运市场型号(快递、普通货物、特殊货物……)
(2) 起飞循环:50 个起飞循环应真实模拟跑道运行期间轮胎的性能,以适应最关键的起飞重量和速度组合以及飞机重心位置。在确定上述最关键组合时,请务必考虑高场高海拔运行和高环境温度(如适用)导致的速度增加。指定与轮胎测试范围相对应的适当负载-速度-时间数据或参数。图 1、2 和 3 是测试的图形表示。从零速度开始,将轮胎靠在测力计飞轮上。测试循环必须模拟图 1 或 2(适用于速度等级)或图 3 中所示的曲线之一。
A109S“Grand”是使用配备 FADEC 的 PW207C 发动机的 A109E 的改进型。其他差异包括加长的机身(200 毫米)、使用更大的滑动乘客门和增加最大起飞重量。由于机身的改变,后来的认证基础适用,要求座椅符合动态测试要求和防撞油箱。主旋翼毂和新的起落架配置取自 A109LUH;使用与 A119 类似的主旋翼叶片;尾翼经过改装以使用翼尖,并且对包括航空电子设备在内的各种其他系统进行了偶然改进。 A109S 还可以配备“Trekker”套件,该套件引入了固定滑橇装置、航空电子设备更新和 AFCS(如果尚未安装在飞机上作为选项)。
这些显示了通过更好的发动机,结构或空气动力学的范围,有效载荷,有效的起飞重量或经济学的改进。此参考概念还用于研究机身螺旋式整体问题,测量起飞和降落噪声的改善,甚至用于为减少噪声等领域开发新的飞行程序。应该清楚地认识到这些参考飞机不是什么。它们不是飞机程序的初步设计。它们不是任何人都会建造或提供给世界航空公司的构想。用于这些目的的飞机设计需要大量的开发和证实,几个数量级比现实的技术测量目的所需的数量级要大。在本文中提到飞机时,请认识到它们是出于参考目的,用于测量改进以及对问题领域的了解;
空客 A350F 与波音 777F 的比较 A350F 具有: ● 体积增加 11%(+71 立方米 ~3.5 个主甲板托盘) ● 有效载荷增加 3 吨至 5 吨/起飞重量减轻 30 吨 ● 等效有效载荷下航程增加 300 海里 ● 每吨每次飞行的经济性提高 20%(现金运营成本降低) ● 新发动机技术和空气动力学优化设计 ● 与 B777F 相比,燃油消耗减少 20%,二氧化碳排放量降低 20% ● 唯一符合 2027 年 ICAO 排放标准的货机 ● 采用电传操纵系统以及当今最现代化的驾驶舱和航空电子设备 ● 空客 A350 系列在机组人员、备件和操作方面的通用性