1. 简介。轨迹跟踪是飞行控制系统的一项基本任务。在这一任务中,确保所采用的方法准确,特别是对干扰具有鲁棒性至关重要。这对于飞行的关键阶段(例如进近和着陆)尤其重要,因为飞行在拥挤的空域和近地飞行。在这些阶段,干扰引起的偏离参考轨迹可能会导致灾难性的后果。因此,风是飞行系统最危险的干扰之一,因为它不可预测,对飞机动力学影响很大。考虑到上述飞行条件下控制任务的关键性,迄今为止已经研究了几种用于此应用的方法。在 [19] 中,作者提出了一种 gamma/theta 制导律,用于跟踪已知风场的最优控制方法得出的轨迹。作者在垂直平面上制定了问题,并使用起飞阶段的数值示例说明了所开发的方法。 [15] 中的研究提出了一种自适应控制方案,利用该思想控制飞机在起飞阶段的爬升率。该反馈控制律不需要事先了解风场。[4] 中的作者将非线性空间反演方法应用于飞机轨迹跟踪。开发了一种新的垂直平面制导方案,与传统的基于非线性动态反演的方法相比,其跟踪性能有所提高。与 [19] 类似,需要对现有的风扰动进行先验估计。着陆飞行阶段被视为二维跟踪
4-5-2020 进一步提升通用航空飞行安全:飞机起飞事故分析 黄晨宇 内布拉斯加大学奥马哈分校 美国国家运输安全委员会(NTSB)的数据显示,2014 年至 2019 年,通用航空(GA)占美国航空运输相关事故和事故征候总数的 76%。查明原因是飞机事故调查中最重要的任务之一,也是主动预防飞机事故的关键策略。由于飞机配置、飞行运行环境和机组人员工作量的变化,飞机和机组人员在飞行的每个阶段的表现不同,因此飞机事故的原因可能因飞行阶段而异。大多数事故发生在最后进近和着陆阶段,许多研究人员从不同角度对其进行了研究。然而,关于起飞阶段的飞行安全研究却很少,而起飞阶段是通用航空飞机事故和事故征候数量第二多的阶段。充分了解通用航空飞机起飞事故的原因对于制定更有效的飞机起飞风险缓解和事故预防对策至关重要。本研究的目的是通过分析美国国家运输安全委员会发布的飞机事故调查报告来了解通用航空飞机起飞事故的原因。为了更好地了解通用航空飞机起飞事故的原因,以下研究旨在
航空公司和通勤运营的大多数飞行阶段都采用精心设计的标准程序,这些程序往往是线性的——一个给定的必需任务紧接着另一个必需任务。例如,在起飞阶段,施加动力后会检查发动机性能或功率,而根据特定的飞机和运营商的不同,检查发动机性能或功率后又可能进行各种性能检查。相比之下,飞行前阶段的任务可能不是线性的;飞行员可能需要同时处理飞行计划、天气信息和变化、燃料装载、调度清单和放行、最后一分钟的维护或最低设备清单 (MEL) 项目、值班时间要求和飞机除冰,并且由于“晚期”操作的时间压缩,飞行员经常承受压力。此外,可能存在
因此,随着对电力需求的增加,传统的液压和气动系统、飞机的发电能力也需要显著提高。目前,每架 787 飞机都可以为其机载系统提供约 1,000kVA 的电力,而根据波音公司的数据,其机载系统和初创公司的大量计划都比上一代机型采用了某种形式的电力推进。机载系统目前正在开发中。这些不同的电力存储也显著增长。从小型通用航空飞机和城市机动性设计到军事领域,这一重大变革一直延续到 F-35 能够为商用客机提供电力。大约 400kVA,并且需要进一步升级。如果要实现后者类别的电动飞机,空客认为,传感器和系统将添加到平台中。起飞阶段需要 40MW 的功率,而巡航阶段则降至 20MW。系统消除了重量和复杂性。作为实现最终目标的一步,
摘要 - 无人驾驶飞行器 (UAV) 已广泛应用于经济、安全、军事等许多领域,包括空中拍摄、交通状态更新、在建建筑监视和娱乐……如今,无人机研究是最受关注的领域,尤其是在自主控制器方面。在本文中,我们提出了一种用于倒 V 型尾翼配置的固定翼无人机的实时控制算法模型,包括自动起飞阶段、航路点跟踪阶段和自动着陆阶段。该算法是在 matlab/simulink 上构建为标准化模型,并使用 PID 控制器进行实现。使用 X-Plane 模拟算法的性能 - X-Plane 是由 Laminar Research 开发并由美国联邦航空管理局 (FAA-USA) 认证用于训练飞行员的模拟器,它能够使用实时数据和最高精度进行模拟飞行
混合动力推进飞机使用传统发动机驱动发电机来提供电力,并配备了可充电储能电池。发电机和电池都可以为分布在机翼或机身上的多个电动机 /螺旋桨提供电源。电池的重量受到有限的车载空间和负载的约束,满足飞行任务的功率和能量要求的最小重量通常被用作设计目标。基于新的混合动力系统方案,本文研究了飞行过程中飞机电池重量要求的计算方法。分析结果表明,攀爬阶段的电池电量需求可以转换为电池重量要求,该电池重量要求高于根据起飞阶段的功率要求计算得出的电池重量要求;此外,电池的总能量需求是起飞和攀爬阶段要求的积累,这需要在飞机的概念设计阶段进行考虑。
摘要 — 考虑到机械系统动力学分析的多体方法,本文旨在构建一个简单的计算机模型来描述执行纵向运动的固定翼飞机的动力学。为此,分析了一种简化的飞行器模型,该模型没有控制面,具有轴向推力,并且空气动力学作用有限。然后使用 Digital DATCOM 软件对气动系数进行建模,同时将升降舵也视为控制面。首先,在多体动力学的背景下研究飞机动力学。然后,分析了被视为本文示例的案例研究,即 Cessna 172 Skyhawk 飞机。通过对外部施加的作用和气动系数进行建模,随后分析了飞行起飞阶段背后的基本力学。在本文中,使用拉格朗日公式方法驱动描述示例动态行为的运动方程。然后在 MATLAB 环境中构建的计算机代码中实现了示例的动态模型。通过这样做,该过程的目标是尽可能准确地开发 Cessna 172 Skyhawk 飞机的虚拟模型。如本文使用数值模拟所示,本文分析的案例研究的计算机模型能够模拟
偏离控制柱和推力杆。DFDR 记录到推力从 98% 减少到 77%。机长立即将控制权交给副驾驶,大声喊出“您的控制权”,据他所说,大约需要调整折叠的座椅靠背,花了 5 秒钟才恢复正确的座位位置。机长从不平衡的位置恢复后,他向外看去,发现他们只剩下最后 2000 英尺的跑道,飞机仍未达到 143 节的 V1 速度。当速度接近 V1 且飞机距离标记还有 1000 英尺时,机长接管了控制权,机长将控制柱向后拉以开始旋转。机组人员感觉飞机旋转速度变慢,操纵杆所需的力比正常情况下要大。此外,起飞时他们还感受到轻微振动,类似尾流湍流。飞机起飞后,副驾驶呼叫“正速率”,并执行起落架收起命令。图 1 解释了起飞阶段的事件顺序。
简单。1935 年 10 月 30 日,情况发生了变化。一架 299 型飞机(后来被指定为 B-17)在起飞后不久坠毁,原因是飞行员未能释放新的方向舵和升降舵锁定装置(Schultz,2012 年)。此后,检查单成为飞机的标准配置,但随着飞机变得越来越复杂,越来越多的检查单错误浮出水面。联邦航空管理局 (FAA) (1995) 使用国家运输安全委员会 (NTSB) 的数据,发现检查单使用不当是 1978 年至 1990 年间 37 起重大事故的可能原因或促成因素。此外,FAA 的安全分析部门在同一项研究中得出结论,1983 年至 1993 年间,279 起涉及检查单错误的事故导致 215 人死亡,260 多人受伤。航班起飞前或起飞阶段发生的与检查表相关的事故比例最高(FAA,1995 年)。NTSB 事故报告证实了 1987 年西北航空 255 号航班和 1989 年达美航空 1141 号航班的此类错误。检查表错误事故示例。两起航空公司事故,西北航空 255 号航班,
附录 A – 了解飞机超跑和下冲 简介 ACRP 4-01 项目的目标是调查飞机超跑和下冲事件,以评估跑道安全区提供的保护。了解超跑和下冲事件如何发生对于机场运营商和监管机构识别与运营相关的危险并管理其设施中与此类事件相关的风险至关重要。此外,他们将更好地理解安全区如何提供一定程度的保护,并可能找到替代方案来减轻此类事件的后果。跑道安全区 (RSA) 有助于减轻下冲和超跑事件的后果。它们在跑道周围提供额外的平滑表面,飞机可以利用这些表面停下来或继续着陆。要了解超跑和下冲是如何发生的,有必要了解飞行员在飞行的着陆和起飞阶段使用的程序和可用的资源。此外,有必要了解天气条件、跑道条件和人为错误如何对运营产生负面影响并导致超跑或下冲。着陆 大型运输机的空速和姿态需要调整以适应着陆。空速保持在失速速度以上加上安全裕度,并保持恒定的下降速度。在着陆前,下降速度降低到每分钟几英尺,从而实现轻触地。着陆