在本文中,提出了一个LA 2 O 3 /HFO 2双层偶极 - 偶极 - 第一(DF)工艺,并通过超低温度PVD PVD介电层压板进行了研究,以实现较低的栅极有效工作功能(EWF),以实现整体岩石3D-IC(M3D)应用。全面研究了超低温度LA-偶极子对EWF调制和界面特性的影响。发现平移电压(V FB)用较低的1nm La 2 O 3厚度呈60 mV,这提供了满足SI传导带边缘EWF调制的有效方法。此外,LA 2 O 3 /HFO 2 BI-LAYER DF工艺抑制了电子陷阱 /逐渐陷阱密度(非)和界面陷阱密度(DIT),以提高设备性能。这些结果在低热整合中表现出有希望的双层DF工艺,用于高级IC技术。
SCV-2586 可用作太空和电子应用中的粘合、密封或灌封材料。它具有抗辐射、低热导率、氧化稳定性、热稳定性和良好的烧蚀特性。这种弹性体远远超过了行业标准 ASTM E595,总质量损失 (TML) 小于 0.10%,收集挥发性可冷凝物质 (CVCM) 小于 0.01%。这种轻质材料的比重为 0.74,非常适合注重重量的飞行应用,并且具有高附着力,底漆搭接剪切强度为 175 psi。
摘要 采用 70 nm GaAs mHEMT OMMIC 工艺 (D007IH) 设计了四级 K 波段 MMIC 低噪声放大器 (LNA)。基于 Momentum EM 模拟结果,四级 LNA 实现了 29.5 dB ±1 dB 的增益、低至 1 dB 的噪声系数 (NF) 和整个波段优于 -10 dB 的输入回波损耗。LNA 芯片尺寸为 2500 µm x1750 µm。由于选择源阻抗以最小化实现输入匹配网络所需的元件数量,因此设计工作流程可以改善 LNA 的 NF 和输入回波损耗。所提出的电路的输入匹配网络由与有源器件的栅极串联的单个锥形八角形电感器组成,从而对第一级实现的 NF 影响很小,并显著改善 LNA 的输入回波损耗。
摘要:紧凑,能量功能和自主无线传感器节点在不同环境之间具有令人难以置信的多功能性。尽管这些设备发送和接收实时数据,但有效的能量存储(ES)对于它们的操作至关重要,尤其是在远程或难以到达的位置。可充电电池通常使用,尽管存储容量通常有限。为了解决这个问题,可以实施超低功率设计技术(ULPDT),以降低能源消耗并延长电池寿命。能量收集技术(EHT)可以以环保的方式实现永久操作,但由于其间歇性的性质和有限的发电,可能无法完全替代电池。为了确保不间断的电源,需要ES和电源管理单元(PMU)等设备。本综述着重于最大程度地减少功耗和最大化能量效率以提高这些传感器节点的自主性和寿命的重要性。它检查了ULPDT,ES,PMU,无线通信协议和EHT的当前进步,挑战和未来的方向,以开发和实施在现实情况下实用和持续使用的强大而环保的技术解决方案。
高效的硬件-细胞通信对于理解细胞状态和控制细胞至关重要,是推进下一代人机界面的关键途径。在这里,我们提出了一种基于天然纤维素的节能神经装置,解决了传统接口通信硬件的局限性,特别是在材料生物相容性和生物信号匹配方面。基于纤维素的装置有效地模拟了生物突触连接的可塑性,并在低至 10 mV 的连续脉冲刺激下表现出学习行为。值得注意的是,它表现出卓越的数模转换性能,最低功耗为 0.1 nJ,有助于实现高效的界面生物信号匹配。此外,引入了一个分子级模型来阐明电刺激引起的纤维素分子内极性键的旋转。这种旋转改变了材料的相对介电常数,揭示了数模转换能力和类似神经的行为。此外,透明纤维素薄膜既可作为介电层,又可作为机械支撑,使设备能够在各种曲率下保持功能稳定性。这项研究中,基于纤维素的灵活且生物相容性的神经装置不仅可以有效地模拟突触,而且由于其低功耗信号转换,有望在脑机接口应用中实现有效的生物信号匹配。
由模拟大脑生物电信息处理的忆阻器构建的神经形态系统可能会克服传统计算架构的限制。然而,仅靠功能模拟可能仍无法实现生物计算的所有优点,生物计算使用 50-120 mV 的动作电位,至少比传统电子设备中的信号幅度低 10 倍,以实现非凡的功率效率和有效的功能集成。因此,将忆阻器中的功能电压降低到这种生物幅度可以促进神经形态工程和生物模拟集成。本综述旨在及时更新这一新兴方向的努力和进展,涵盖设备材料成分、性能、工作机制和潜在应用等方面。
1. 启动 Tera Term 并选择 USB Serial Port 2. 将串口设置为 115200,然后按下 AI Reset 按钮(下图中位置‘ 〇 ’)。 3. 发出“UP”的声音以确认识别
学士:首尔国立大学电子工程学士 (1996 - 2000) 硕士:首尔国立大学电子工程学士 (2000 - 2002) 博士:首尔国立大学电子工程学士 (2002 - 2006) 工作经历
日期 版本 说明 2009 年 3 月 1.2 更新了图 33.、图 34. 和表 35. 。2009 年 9 月 1.3 添加了表 93。更新了 BOM、表 28.、表 29.、表 34.、表 46.、表 53.、表 61.、表 87.、表 101.、表 113.、表 115.、第 6.3.4.1、9.1、9.3 13.3.3、29.1.2、29.2.2、29.3.2 和 30.1 节。简化了二进制数的书写方式和寄存器位的表示方式。2010 年 4 月 1.4 更新了图 9.、图 10.、图 30.、注意:第 87 页、图 46.、图 51. 和图 52。更新了第 2.1 节、第 12.3 节、第 13.3.1 节、表 14.、表 15.、表 27.、表 58.、表 111.、表 114. 和表 115。更新了第 29 章中的 BOM 信息。2010 年 7 月 1.5 更新了第 77 页的 6.3.5.1、第 109 页的表 57、第 111 页的表 58、第 150 页的表 88 和第 176 页第 24 章中的人体模型类。2010 年 8 月 1.6 添加了 RoHS 声明并更新了第 150 页的表 88。