4.1 容性负载 ................................................................................................................................................................ 7 4.2 典型应用 ................................................................................................................................................................ 8 4.3 系统示例 ................................................................................................................................................................ 9
在纳米级CMOS过程中,随着特征尺寸的缩小,外在厚度会变细,这将导致Nell和Pwell的较高板电阻。因此,将距离(D1)从N +活性区域增加到NWELL/PWELL中的P +活性区域可以有效地扩大NWELL的电阻(Pwell)。图6显示了具有四个不同
区域,从而增强了光学强度。然而,如此高的光学结构增加了纳米级不均匀性引起的散射损失的敏感性。氮化硅是一种介电材料,具有相对较大的非线性指数系数和一个从紫外线到中红外的宽带透明度窗口。其折射率与二氧化硅形成鲜明对比允许高分并控制波导几何形状的分散体。在过去几年中,这个材料平台作为依赖KERR效应的非线性光学应用程序的主力,从微型BOMB的生成到副标。在本文工作中,我们专注于开发高级制造技术,以实现氮化硅波导的实现。仪表长的高填充波导据报道,有1.4 db/m的阶段损失创纪录的低损失和分散工程的mi- croResonators,质量为1900万。基于这项技术,我们证明了带有光电检测的重复速率的八度跨度相干微膜和小鳄鱼的设备面积小于1毫米2,即比艺术的状态小的数量级。高产量和超损坏Si 3 N 4波导也使我们在整合波导中的第一次连续波参数放大器也可以实现,当以相位敏感的模式运行时,表现出9.5 dB的增益为9.5 dB,噪声效率为1.2 db。
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
本文介绍了一种高效设计量子点细胞自动机 (QCA) 电路的新方法。所提方法的主要优点是减少了 QCA 单元的数量,同时提高了速度、降低了功耗并增大了单元面积。在许多情况下,需要将特定中间信号的效应加倍。最先进的设计利用一种扇出来实现这些,从而增加了单元数量,消耗了更多功率并降低了电路的整体速度。在本文中,我们介绍了单元对齐,以将某个信号的效果乘以二、三甚至更多。这可以被视为设计任何需要此属性的任意电路的新视角。此外,还介绍了一种新的共面交叉方法,该方法能够在两个连续时钟内进行共面交叉,最坏情况下需要一个旋转单元。为了证明所提想法的有效性,我们设计了一个新的全加器单元和一个新的进位纹波加法器(4 位),它提供更少的 QCA 单元数量以及更低的功耗和成本。
摘要:量子状态从微波炉到光学结构域的相干转导可以在量子网络和分布式量子计算中起关键作用。我们介绍了在硅平台上的混合锂锂锂中形成的压电机电设备的设计,该设备适用于微波至光学量子转导。我们的设计基于具有光力学晶体腔的超低模式压电腔的声学杂交。Niobate锂的强压电性质使我们能够通过声学模式介导转导,该声学模式仅与硝酸锂相互作用,并且主要是硅状的,并且具有非常低的电气和声学损失。我们估计,该传感器可以实现<0的固有转换效率高达35%。5添加噪声量子量当与超导式的transmon值偶联并以10 kHz的重复速率以脉冲模式运行时,添加了噪声量子。在这种混合锂硅硅酸盐透射剂中获得的性能改善使其适合通过光学纤维链路连接的超导量子处理器之间的量子纠缠。
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
信息可以通过量子单元内电子电荷的配置进行编码 [5]。在 QCA 中,没有电流流动。单元内的一对电子根据电子相互作用的原理改变其位置。QCA 技术是绕过基于晶体管的器件的理想解决方案,因为它在功耗和速度方面存在许多限制 [3]。QCA 技术具有许多有趣的特性,例如低功耗、高频处理和小特征尺寸 [6]。数字系统的当前趋势是降低电路的复杂性;在这种情况下,QCA 会派上用场。在这项工作中,提出了一种新的 2:1 QCA-MUX 结构。所提出的门在面积、复杂性(单元数)和成本方面都更胜一筹。2. 背景
图 1:(a) 具有铁磁触点的 h-BN 封装单层 WSe 2 隧道器件示意图 (b) 器件的光学显微镜图像。矩形部分(红色)表示封装结构;定义触点之前的封装样品的光学图像。(c) (顶部) 单层 WSe 2 相对于直接接触材料铂的能级图;(底部) 在有限偏压和超阈值栅极电压下的正向偏压条件下的漏源电流示意图。请注意,在我们的器件中,多数电荷载流子是空穴。围绕铁磁触点弯曲的能带未缩放。(d) 4.7K 下单层 WSe 2 的光致发光 (PL) 光谱仪(X o 表示中性激子峰);(插图)同一单层 WSe 2 的室温 PL 光谱显示单层中集体激发的单个特征峰在 1.67 eV 处。
由于 CMOS 的缩放,这些设备的局限性引发了对替代纳米设备的需求。提出了各种设备,如 FinFET、TFET、CNTFET。其中,FinFET 成为最有前途的设备之一,由于其在纳米范围内的低泄漏,它可以替代 CMOS。如今,电子设备在电池消耗方面更加紧凑和高效。由于 CMOS 的缩放限制,CMOS SRAM 已被 FinFET SRAM 取代。已经有两个 FinFET SRAM 单元,它们具有高功率效率和高稳定性。已经对这些单元进行了性能比较,以分析泄漏功率和静态噪声容限。这些单元的模拟是在 20 nm FinFET 技术下进行的。经分析,改进的 9T SRAM 单元的写入裕度实现了 1.49 倍的改进。读取裕度也显示出比本文中比较的现有单元有显著的改善。对于所提出的 0.4 V SRAM 单元,发现保持裕度更好。栅极长度已经改变,以发现栅极长度对读取裕度的影响。
