摘要:超塑性是指当应变率敏感性约为 0.5 时,某些材料能够拉伸至 400% 或更高的拉伸伸长率。1934 年,英国的实验首次报道了真正的超塑性流动。然而,这一非凡的结果并没有引起西方科学研究人员的兴趣,多年来,这一结果只是实验室里的好奇心。后来,随着苏联对超塑性的广泛研究,西方也对超塑性产生了兴趣,超塑性成为广泛科学研究的主题。这项研究进一步得到了加强,因为有证据表明,应用严重的塑性变形可以为实现亚微米甚至纳米级的晶粒细化提供机会,而这些小晶粒对于实现良好的超塑性性能尤其有吸引力。现在人们认识到,超塑性合金具有出色的成形能力,尤其是在制造使用更传统的工艺不易制造的高质量曲面部件时。这导致了大型超塑性成形行业的发展,目前该行业处理数千吨金属板。本报告追溯了这些发展,重点强调了超塑性流动发生背后的科学原理。
摘要:本研究旨在实现超细晶粒 (UFG) Al 2024 合金在低于传统商用铝合金 (400-500 ◦ C) 温度下的超塑性。室温下通过高压扭转在合金中产生的 UFG 结构平均晶粒尺寸为 100 nm,具有非常高的强度 - 显微硬度 (HV 0.1) 为 286 ± 4,偏移屈服强度 (σ 0.2) 为 828 ± 9 MPa,极限拉伸强度 (σUTS) 为 871 ± 6 MPa,断裂伸长率 (δ) 为 7 ± 0.2%。在温度为 190 至 270 ◦ C、应变速率为 10 − 2 至 5 × 10 − 5 s − 1 的情况下进行了复杂的拉伸试验,并确定了流变应力、总伸长率和应变速率敏感系数的值。结果表明,UFG 合金在 240 和 270 ◦ C 的试验温度下表现出超塑性行为。首次在 270 ◦ C(0.56 T m )的异常低温和 10 − 3 s − 1 的应变速率下实现了 400% 的伸长率。超塑性变形后的 UFG 2024 合金具有比标准强化热处理 T6 后的强度(150–160 HV)更高的强度。
材料的质超塑性是一个重要研究的重要领域,因为它在流动机制领域中呈现出重要的挑战,并且因为它形成了商业超规模形成行业的基础,其中复杂形状和弯曲部分是由超塑性金属形成的[1,2]。众所周知,必须满足两个基本要求才能达到超塑性流。首先,超塑性需要很小的晶粒尺寸,典型的小于约10μm。其次,超塑性是一个具有晶粒边界(GB)滑动的扩散控制过程 - 作为主要流动机制 - 因此,它需要相对较高的测试温度,通常在或高于约0.7-0.8×T m,其中T m是材料的绝对熔化温度。同时,在过去的二十年中,金属材料的开发通过严重的塑料变形(SPD)进行了纳米化范围的超细晶粒,从而铺平了朝着超塑性领域的新发现铺平的道路[3,4]。实际上,
研究了Sn-Bi-Cu、Sn-Bi-Ni、Sn-Bi-Zn、Sn-Bi-Sb合金的超塑性变形行为。本研究旨在测定Sn-Bi二元合金的应变速率敏感性指数m。在不同横梁速度下进行25、40、60和80 ℃拉伸试验,测定指数m。结果表明,指数m随Bi浓度和试验温度的增加而增大。在60和80 ℃时,Sn-Bi合金的指数m均超过了3.0,这是超塑性变形行为的阈值。研究发现,Sn-Bi共晶组织对亚共晶Sn-Bi合金的超塑性变形有显著的影响。
1985年引入的经颅磁刺激(TMS)已成为研究脑掩盖关系和治疗干预措施的重要工具。重复的TMS(RTMS)作为一种治疗工具,已经显示出对包括自闭症在内的各种神经精神病疾病的希望,这些神经精神病患者影响了大约1%的全球人群。证据表明,非典型神经可塑性是自闭症神经生物学的特征。与神经型对照相比,使用TMS范式(例如theta-burst刺激(TBS))的研究表明,自闭症成年人运动皮层的过度长期增强(LTP)的形式过多的神经可塑性或过度塑性性。超塑性可能会对认知和行为结果产生负面影响。我们提出的基于神经塑性的RTMS干预方案旨在解决自闭症成年人的运动功能,感觉敏感性和执行功能困难。我们提出了一个可测试的框架,以评估运动,感觉和背外侧前额叶皮层中的神经可塑性,假设自闭症成年人的过塑性存在。我们预计这种超塑性是自闭症成年人的运动,感觉和执行功能困难的基础。此外,我们建议研究双侧RTM的功效,以降低过度塑性并改善自闭症成年人的这些功能。这种方法不仅试图增强治疗选择,而且还提供了对一些常见自闭症相关困难的脑机制的生物学见解。
基于先前工作中开发的热模型,并在参考文献中呈现。[4],已经确定,由于预热,可以将奥氏体阶段保留在激光处理过程中的整个存款步骤中。基于计算的材料点历史,在样品,LPF1和LPF2的制造中也实现了相同的结果。因此,在最后冷却阶段关闭激光器后,马氏体转化才发生。这样的转化产生了扩张菌株,可以促进沉积物内“拉伸”残留应力。但同时,冷却阶段本身会导致样品内收缩。现在考虑参考的工作。[5],取决于关键马氏体转化点(MS和MF)的位置,可能会出现“热”残留应力的暂时放松,这是由于所谓的超塑性效应在Martensite Transformation的时刻出现。在LFP2样品中获得的较高热量积累(见图7C)以及同一样品中较高的同质性水平可以被认为是该样品中获得的更好的超塑性效应的原因,从而避免了随后的冷裂裂纹现象,从而避免了更好的压力缓解。这些条件在CP和LFP1的两个样本中都无法存在,因此导致它们随后的冷裂。
1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。
自闭症谱系障碍(以下称为自闭症)是最常见的神经发育状况之一,影响了大约1%的世界人群[1]。据估计,超过90%的自闭症个体表现出非典型的感觉反应性[2]。对外部刺激的超反应性或性能不反应的形式的非典型感觉反应性是自闭症中的基本预定。在感觉域中,非典型触觉反应性(TR)是一种常见的预言,早期出现,一直持续到成年,并不利地影响社会互动和日常功能,从而显着有助于整体残疾[3,4]。自闭症护理和临床研究未来的国际委员会将感觉领域确定为可能影响自闭症中护理和结果的最佳临床研究优先事项之一[5]。我们聘请了参加我们专业自闭症诊所的自闭症成年人,并收到了一致的反馈,即这是一个很大的未满足需求的高优先级领域。在行为上,触觉性低反应性和过度反应性都在相同的连续体上,反映了相同的基本生物学过程,在这种生物学过程中,低反应性是应对过度刺激的应对机制[6]。触觉加工的神经生理学研究[4,6]以及自闭症原发性皮质(S1)中兴奋性和抑制性代谢产物的神经图像研究仍然不一致且不确定[7,8];因此,大脑过程为非典型TR提供了生物逻辑干预措施仍然难以捉摸。融合证据表明自闭症的神经生物学的特征是非典型可塑性。自闭症的丙戊酸动物模型的关键见解是,过度的长期增强(LTP)可塑性或超塑性对行为产生不利影响[9-11]。超塑性[11]。S1是否具有过度塑性的特征,在自闭症人类中可能是非典型TR的基础,这是未知的。使用经颅磁刺激(TMS)[12-15]在人类运动中始终观察到更直接的过塑性证据[16]。我们的小组复制了自闭症成年人运动皮质中超塑性的发现[15]。作为干预的基础,我们还使用重复的经颅杂志刺激(RTMS)方案收集了试点数据,旨在增强抑制机制,从而降低了自闭症成年人的过度塑性性[15]。在我们先前发表的研究[15]中,我们进行了一项随机试验,涉及29名自闭症成年人。将参与者分配(1:1)进行一次活动或假RTM的一次疗程,在20Hz处施加6,000个脉冲,tar-获得运动皮层。结果表明,活性RTM对长期增强(LTP)的效果很大,在RTMS之后的第二天,LTP降低了。这种过度塑性的减小与自闭症的神经元激发/抑制(E/I)模型的改变相一致[17]。根据该模型,自闭症中观察到的超塑性与E/I比的增加有关,促进抑制可能有助于观察到的减少。使用20 Hz RTM的理由主要基于我们小组的先前研究,这表明与早期的惯例相反,仅频率并不能决定RTMS的兴奋性或抑制作用。,“剂量”或刺激的数量
“越小越软”是强度的逆尺寸依赖性,违背了“越小越强”的原则。它通常由表面介导的位移或扩散变形引起,主要存在于一些超小尺度(几十纳米以下)的金属材料中。在这里,利用离子束辐照的表面改性,我们在更大尺寸范围(< ∼ 500 纳米)的共价键、硬而脆的材料非晶硅(a-Si)中实现了“越小越软”。它表现为从准脆性破坏到均匀塑性变形的转变,以及在亚微米级范围内随着样品体积的减小而屈服应力的降低。提出了一个硬核/超塑性壳的分析模型来解释人为可控的尺寸相关软化。这种通过离子辐照的表面工程途径不仅对于调整小尺寸非晶硅或其他共价结合非晶态固体的强度和变形行为特别有用,而且对于非晶硅在微电子和微机电系统中的实用性也具有实际意义。© 2023 由 Elsevier Ltd 代表《材料科学与技术杂志》编辑部出版。