在我们的质量评估中,放射科医生在乳腺超声解释中前瞻性地使用人工智能决策支持与诊断性能的提高相关,良性活检率降低,PPV3增加,同时保持一致的活检率。
人工智能 (AI) 使用数据和算法来得出与人类得出的结论一样好甚至更好的结论。人工智能已经成为我们日常生活的一部分;它支持人脸识别技术、虚拟助手(如 Amazon Alexa、Apple 的 Siri、Google Assistant 和 Microsoft Cortana)中的语音识别以及自动驾驶汽车。人工智能软件已经能够击败国际象棋、围棋甚至扑克的世界冠军。对于我们的社区而言,它是医疗保健领域创新的重要来源,已经帮助开发新药、支持临床决策并提供放射学质量保证。获得美国食品药品监督管理局或欧盟(即将纳入欧盟医疗器械法规)批准的医学图像分析人工智能应用名单正在迅速增加,并涵盖了各种临床需求,例如使用智能手表检测心律失常或将关键成像研究自动分类到放射科医生的工作列表的首位。深度学习是人工智能的主要工具,在图像模式识别方面表现尤为出色,因此可以为严重依赖图像的医生带来巨大益处,例如超声医师、放射技师和病理学家。尽管产科和妇科超声是最常见的两种影像学研究,但人工智能迄今为止对这一领域的影响不大。尽管如此,人工智能在协助重复性超声任务方面具有巨大潜力,例如自动识别高质量采集并提供即时质量保证。为了发挥这一潜力,人工智能开发人员和超声专业人员之间的跨学科交流是必不可少的。在本文中,我们探讨了医学成像人工智能的基础知识,从理论到适用性,并向超声领域的医疗专业人员介绍了一些关键术语。我们相信,更广泛的人工智能知识将
简介:慢性心力衰竭 (HF) 是全球主要的公共卫生问题,尽管过去二十年在诊断和治疗方面取得了重大进展,但 HF 患者的预后仍然不佳。该研究旨在评估肺充血(通过肺超声 (LUS) 评估)、生物阻抗谱、体液区室和超声心动图参数之间的关系,并确定这些关联对 HF 患者全因死亡率的影响。材料和方法:通过每日超声心动图评估确定左心室射血分数 (LVEF) 低于 45% 的符合条件的患者。患者处于仰卧位时进行肺部超声检查,每次完整检查共检查 28 个部位。使用 BIS 设备测定细胞外水 (ECW)。结果:我们的研究包括 122 名患者(67.2% 为男性),平均年龄为 67.2 岁。在包括所有肺充血单变量预测因子的多变量线性回归分析中,只有纽约心脏协会 (NYHA) 分级、ECW、估计肾小球滤过率 (eGFR) 和 LVEF 水平与 B 线数量保持独立关联。在随访期间,33 名患者死亡。在多变量 Cox 分析中,B 线数量至少为 15 与全因死亡率显着相关,与年龄、性别、糖尿病、LVEF、估计肾小球滤过率、C 反应蛋白、N 末端脑钠肽前体或 ECW 值无关(调整后的 HR = 3.84,95% CI:1.12-13.09)。结论:我们首次表明,在 HF 患者中,通过 LUS 评估的肺充血与 NYHA 分级、LVEF、eGFR 和 ECW 的严重程度相关,并可识别出死亡风险较高的患者。
恶性脑肿瘤是儿童癌症相关死亡的主要原因,并且仍然是所有人口群体发病和死亡的重要原因。中枢神经系统 (CNS) 肿瘤的传统治疗方法是手术切除和放疗,以及辅助化疗。然而,由于血脑屏障 (BBB),化疗药物的治疗效果有限。磁共振引导聚焦超声 (MRgFUS) 是一种新的、有前途的 CNS 肿瘤干预方法,已在临床前试验中取得成功。高强度聚焦超声 (HIFU) 能够以热消融和机械破坏肿瘤的形式作为直接治疗剂。低强度聚焦超声 (LIFU) 已被证明可以破坏 BBB 并增强大脑和 CNS 对治疗剂的吸收。作者对 MRgFUS 在 CNS 肿瘤治疗中的应用进行了综述。该治疗方法在临床前试验中已显示出良好的效果,包括副作用最小、治疗药物向中枢神经系统的渗透增加、肿瘤进展减慢、生存率提高。
流体,伤口,创伤,侵入性手术,例如活检和排水,以及需要帮助的非常生病的患者。在精神上,我们必须在广泛的器官和条件下对解剖学和病理有很多知识。我们必须一直保持警惕,以搜查患者解剖结构中的任何异常。我们必须能够与患者,同事和医生进行准确和专业的沟通。在情感上,我们在工作中处理并体验了很多情绪和心痛。在许多困难的情况下,我们必须能够向我们关心和关心的人表现出同情心,同理心和理解。我们还必须能够在处理压力大的工作量的同时完成上述所有操作,这通常包括呼叫职责,有时会使您几乎没有睡眠。
超声波能量被广泛用于微电子包装的线键合中。有必要确保最大的超声振动位移发生在粘合工具(毛细管)的尖端或附近,以获得最佳性能。在这项研究中,使用激光干涉仪用载荷测量沿毛细管的超声振动的振幅。这为理解和改善毛细血管性能提供了宝贵的信息。该方法应用于实时应用,以优化针对特定键合应用的毛细管设计和粘结过程。首先,评估了与不同的氧化锆成分的新毛细血管材料的应用。具有一定量的氧化锆成分的新材料表明,它是超细节粘结的首选毛细血管材料。接下来,进行了比较分析,以研究新的“ Slimline”瓶颈和常规瓶颈的超声能量转移。使用相同的键合参数,模制的Slimline瓶颈的实际键合响应与地面常规瓶颈表现出了可比的性能。最后,在电线螺栓上进行了60 m m键 - 盖式过程的优化。在优化的参数范围内,监测毛细管的超声位移。对于粘结力和键功率的所有可能组合,毛细管的超声位移随着键功率的增加而增加,而不会导致粘结力变化引起的急剧变化。这表明所选的过程窗口位于稳定区域。Q 2005 Elsevier Ltd.保留所有权利。Q 2005 Elsevier Ltd.保留所有权利。
磁共振引导聚焦超声 (MRgFUS) 是一种非侵入性治疗方法,它结合了聚焦超声和磁共振成像两项技术。超声波束穿透软组织,在 MRI 的引导和监测下,可聚焦于目标部位。超声波使目标组织局部温度升高,导致凝固性坏死,同时不伤害周围的正常结构。每次超声产生的超声波都指向一个焦点,该焦点的最大焦点体积直径为 20 纳米,高度/长度为 15 纳米。这会导致温度快速升高,足以在焦点处实现组织消融。除了提供引导外,相关的 MRI 还可以提供在线温度成像,提供温度“图”,可进一步确认消融治疗的治疗效果并允许实时调整治疗参数。美国食品药品监督管理局 (FDA) 已批准 ExAblate® MRgFUS 系统 (InSightec, Inc.,以色列海法) 用于四种适应症;治疗子宫肌瘤 (平滑肌瘤),缓解骨转移性肿瘤相关疼痛,治疗药物难治性特发性震颤和震颤为主的帕金森病。超声设备专门设计为与 MR 磁体兼容,并集成到标准临床 MRI 单元中。它包括一个患者桌,桌上有一个支架,支架将聚焦超声换能器放置在水浴或轻油浴中。该设备的某些型号具有可拆卸支架;只有某些类型的支架可用于缓解转移性骨癌相关疼痛。子宫肌瘤 (平滑肌瘤) 是影响育龄人群的最常见疾病之一。子宫肌瘤的症状包括月经过多、盆腔压力或疼痛。目前可用于治疗有症状的子宫肌瘤的方法包括子宫切除术、腹部肌瘤切除术、腹腔镜和宫腔镜肌瘤切除术、激素治疗、子宫动脉栓塞术和观察等待。子宫切除术和各种肌瘤切除术被视为标准治疗。对于治疗与骨转移相关的疼痛,MRgFUS 治疗的目的是破坏肿瘤周围骨表面的神经。转移性骨病是癌症疼痛的最常见原因之一。现有的治疗方法包括保守措施(例如按摩、运动)和药物治疗(例如止痛药、双膦酸盐、皮质类固醇)。对于对这些治疗没有反应的患者,标准治疗是外照射放射治疗 (EBRT)。然而,相当一部分患者在放疗后仍有残留疼痛,这些患者需要替代治疗方法。 MRgFUS 也正在研究用于治疗其他肿瘤,包括纤维瘤、乳腺肿瘤、前列腺肿瘤和脑肿瘤。特发性震颤是最常见的运动障碍。它通常影响手和手臂,也可能影响头部和声音,很少影响面部、腿部和躯干。它在患者中是异质性的,频率、幅度、加重原因和与其他神经系统缺陷的关联各不相同。特发性震颤的神经病理学尚不确定,一些证据表明它位于脑干和小脑。如果患者因震颤而出现间歇性或持续性残疾,则初始治疗采用药物(β受体阻滞剂或抗惊厥药)。对于药物难治性患者,可以提供手术(深部脑刺激或丘脑切开术),尽管观察到不良事件发生率很高。
方法:基于学校的横断面研究是在Kondoa区的5至20岁之间的小学和中学学者中进行的。符合条件的小学和中学学者根据非专家人员的简化超声心动图标准,然后是专家人员的2012年世界心脏联合会标准。连续变量作为标准偏差或IQR中位数的均值表示。分类变量表示为频率和百分比。将简化标准的超声心动图发现与2012年世界心脏联合会的发现进行了比较。使用Stata中的交叉表,确定简化标准的效用。通过接收器操作特征曲线(AUC)在95%CI的情况下通过面积进行了评估并通过面积进行比较。
• 0071T:子宫平滑肌瘤聚焦超声消融,包括 MR 引导;平滑肌瘤总体积小于 200 cc 组织 • 0072T:子宫平滑肌瘤聚焦超声消融,包括 MR 引导;平滑肌瘤总体积大于或等于 200 cc 组织 这些 CPT 代码不应与 51702(插入临时留置膀胱导尿管,简单 [例如 Foley])或 77022(用于实质组织消融的磁共振成像引导和监测)一起使用。在引入特定的 III 类 CPT 代码之前,可能已使用描述该程序各个组成部分的多个代码对该程序进行编码。CPT 代码 0071T-0072T 描述了综合服务。该程序可以在带有开放式磁共振扫描仪的磁共振成像套件中执行,许多机构可能无法使用该扫描仪。该手术在门诊进行,患者处于清醒镇静状态。 其他应用(子宫肌瘤除外) 没有针对转移性骨癌使用磁共振引导高强度超声消融的特定 CPT 代码。 根据所治疗转移的解剖位置,将使用未列出的代码(例如,锁骨为 23929)或未列出的放射肿瘤学代码(例如,77299 或 77499)。 有一个特定的 HCPCS 代码来描述聚焦超声消融的其他应用: