使用超声检查方法用于异常和锂离子电池中的缺陷检测一直是研究人员近年来的一个令人兴奋的主题。用于电池检查的超声波技术主要集中于监视电池状态,识别内部缺陷,并检测诸如锂电池,气体产生和扩展,润湿的一致性以及热失控等问题。该技术通常采用脉搏回波方法,使用触点或沉浸式设置在电池中进行内部缺陷检测。随着超声技术的不断发展,预计将在锂电池检查的各个方面应用越来越多的超声技术。右审讯频率的使用取决于检查的目标。例如,当电池内部有大量阻塞信号的大气体时,使用低频检查。渗透量可能表明细胞的气体程度如何。通过传输信号用于识别与电池内部缺陷相关的音速或穿透量。另一方面,反射信号主要用于定位内部缺陷。当需要单向穿透(例如厚棱镜细胞)并在传感器和细胞之间具有距离时,浸入设置很有用。接触测试通常也用于SOC或SOH估计。
烛烟纳米粒子 (CSNP) 在制造光学超声 (OpUS) 发射器方面显示出巨大的潜力。它们合成简单、成本低廉,同时其独特的多孔结构能够实现快速的热扩散率,有助于产生高分辨率临床成像所需的高频超声波。当用作包含凹面和平面的宏观 OpUS 发射器时,这些复合材料已展示出较高的超声波生成性能,可显示临床相关的细节,但是,对于将这种材料的技术转化为制造用于微创干预图像引导的光纤发射器的研究较少。本文报道了两种纳米复合材料的制造方法,即将 CSNP 嵌入聚二甲基硅氧烷 (PDMS) 中,并使用两种不同的优化制造方法沉积到光纤端面上:“一体化”和“直接沉积”。两种纳米复合材料均呈现出光滑的黑色圆顶结构,最大圆顶厚度为 50 µ m,宽带光吸收率(500 至 1400 nm 之间 > 98%),并且两种纳米复合材料均产生高峰间超声压力(> 3 MPa)和宽带宽(> 29 MHz)。此外,还展示了离体羔羊脑组织的高分辨率(< 40 µ m 轴向分辨率)B 型超声成像,展示了 CSNP-PDMS OpUS 发射器如何实现生物组织的高保真微创成像。
摘要:对 AISI-SAE AA7075-T6 铝合金进行了超声波和常规疲劳试验,以评估人工和诱导预腐蚀的效果。人工预腐蚀是通过在试样颈部沿试验试样的纵向或横向加工两个直径为 500 µ m 的半球形点蚀孔获得的。诱导预腐蚀是使用欧洲航天局的国际标准 ESA ECSS-Q-ST-70-37C 实现的。试样采用频率为 20 kHz 的超声波疲劳技术进行测试,采用频率为 20 Hz 的常规疲劳进行测试。两个施加的载荷比为:超声波疲劳试验中 R = − 1,常规疲劳试验中 R = 0.1。主要结果为人工和诱导预腐蚀对疲劳耐久性的影响,以及常规疲劳试验后的表面粗糙度变化。分析了裂纹萌生和扩展,并建立了数值模型来研究与预腐蚀坑相关的应力集中,以及从裂纹萌生到断裂的 I 型应力强度因子的评估。最后,获得了基材和横向有两个半球形坑的试样的应力强度因子范围阈值 ∆ K TH。
纳米药物通常结合了活性治疗剂和纳米载体的功能,以控制药物在肿瘤中的药代动力学、生物分布和细胞靶向性,同时限制药物在健康组织中的细胞毒性作用。[1] 无论是新药还是纳米药物,从计算机设计到临床试验的开发,仍然具有挑战性、耗时长且成本高昂,新治疗剂能否进入市场并最终使患者受益存在很大的不确定性。[2] 大多数临床试验中或已获准使用的化疗纳米药物都是基于脂质或胶束配方,并结合了标准的非专利抗癌药物,如阿霉素 (DOX)、伊立替康、紫杉醇和顺铂。[3] 先进而复杂的纳米载体,如基于碳和聚合物的纳米颗粒、介孔无机材料、金属有机骨架以及 DNA 和
测量系统多年来,机械杯式和叶片式风速计一直用于测量风速和风向。这些通常是简单但有效的工具,杯子测量速度,叶片测量方向。机械设计的变体还使用小型螺旋桨来测量风速,这两种仪器都相对便宜。然而,还有其他值得考虑的技术。在过去的十五年里,超声波和其他固态技术已经进入市场。其中超声波的使用占主导地位。超声波风速计的优点是没有活动部件,因此它们不会像机械设备那样受到轴承磨损。借助可靠的现代电子设备,超声波风速计几乎可以安装后就不用再使用。另一个优点是它们在提供数据之前没有初始摩擦需要克服。超声波风速计有单轴、双轴和三轴变体。单轴装置仅测量沿其放置轴的风速分量,双轴装置测量水平风速和风向,三轴装置测量三维实时湍流剖面。超声波技术依赖于固定传感器之间的声波测量。典型的双轴风速计测量超声波脉冲从北传感器传播到南传感器所需的时间,并将其进行比较
摘要:提取过程中附着细菌的完全恢复的不确定性是这些微生物计数的主要问题。均质化和超声波处理是最常用的物理提取技术,每一种技术都基于能产生最大产量的假设。使用频率范围在 40 至 50 kHz 之间的超声波处理浴对福尔马林固定的沙质沉积物进行超声波处理,同时输出功率在 100 至 200 W 之间变化,比 23000 rpm 的均质化更有效。超声波处理破坏了许多细菌,对于所研究的沉积物,估计在乘以 1.44 倍时,经过 2.5 分钟的最佳处理后获得的计数可以校正提取过程中的不足。
目前,维护正在向数字化转型,其中也正在开展检查领域的研究。目前的文献表明,人们正努力以各种方式跟踪超声波检测探头的路径,以便将记录的超声波数据与位置信息(即坐标)联系起来。在大多数情况下,数据与独立于零件的参考系统相关联。然而,这样一来,就没有建立对零件坐标系的直接引用,这意味着未来的利用潜力(例如在数字孪生中)没有得到充分利用。为了使用零件本身作为参考,本文开发了一种混合跟踪系统,其中零件无需标记即可跟踪,而超声波检测探头则配备有被动反射标记。这使得可以将超声波检查的传感器数据直接分配给原点位置,而无需为零件配备光学标记。正在对系统的设置和软件开发进行初步工作。实验评估显示了普遍适用性。此外,还介绍了一种使用增强现实技术可视化记录的超声波数据的方法。
压电薄膜通常无法产生较大的力位移。例如,在设计扬声器元件时,这一点就变得很明显,因为低频性能(低于 500Hz)往往受到限制。即使是一大片薄膜也无法产生像低音频频率那样的高振幅压力脉冲。然而,这并不适用于低频到高频超声波频率,正如目前设计的超声波空气测距传感器(40-50 KHz)和医学超声波成像应用中所见。在封闭的气腔中(耳机扬声器、助听器),压电薄膜的低频响应非常出色。对于空气测距超声波,压电薄膜元件高度控制垂直波束角度,而传感器的曲率和宽度控制水平波束模式。压电薄膜空气测距传感器可以提供高达 360 度的视野,以高分辨率测距几厘米到几米的物体。
15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要 进行了测试以确定使用无损检测预测焊接接头疲劳寿命的可行性。测试是在大型样本上进行的,这些样本真实地模拟了船体中的细节。进行了超声波无损检测,包括飞行时间衍射法和线性相控阵法,以检测样本中的疲劳裂纹。研究了使用超声波检测发现的裂纹深度与焊接接头剩余疲劳寿命之间的相关性。还研究了目视观察发现的裂纹长度与焊接接头剩余疲劳寿命之间的关系。本项目得出的有限结果不支持任何关于使用超声波检测方法预测剩余疲劳寿命的实质性结论。17.关键词 超声波检测、相控阵、疲劳、疲劳寿命、焊缝、无损评估、飞行时间衍射
A 节 – 定义 238 1. 定义 238 B 节 – AHP1 分类描述符 – 一般 240 AHP1 分类 – 一般 240 1. 应用 240 2. 实习生 – 医学影像技师(放射技师)和仅核医学技术人员 240 3. 年级 1 240 4. 年级 2 242 5. 年级 3 243 6. 年级 4 246 7. 年级 5 249 8. 年级 6 249 9. 年级 7 249 C 部分 – AHP1分类描述符 –放射治疗技术员(放射治疗师) 250 AHP1 分类描述 – 放射治疗技术员(放射治疗师) 250 1. 实习生 250 2. 放射治疗技术员(放射治疗师)1 级(合格) 250 3. 放射治疗(放射治疗师)技术员 2 级 251 4. 放射治疗技术员(放射治疗师)3 级 252 5. 放射治疗技术员(放射治疗师)4 级253 6. 5 级助理放射治疗经理 1 级(#) 253 7. 5 级助理放射治疗经理 2 级 253 8. 6 级副放射治疗经理 1 级 253 9. 6 级副放射治疗经理 2 级 (*) 254 10. 7 级放射治疗经理 1 级 254 11. 7 级放射治疗经理 2 级 (*) 254 第 D 部分 AHP1 分类描述符 - 超声波检查师255 AHP1 分类描述符 – 超声波技师 255 1. 超声波技师 1 级 255 2. 超声波技师实习生 2 级 255 3. 超声波技师 3 级 255 4. 超声波技师 4 级 255 5. 参加 AP 研究生超声波技师资格考试的员工 256 6. 高等资格津贴 256
