晶圆处理 湿法清洗 溶剂清洗 Piranha 溶液 RCA 清洗 光刻 离子注入 干法蚀刻 湿法蚀刻 等离子灰化 热处理 快速热退火 炉退火 热氧化 化学气相沉积 (CVD) 物理气相沉积 (PVD) 分子束外延 (MBE) 电化学沉积 (ECD) 化学机械平坦化 (CMP) 晶圆测试 晶圆背面研磨 芯片制备 晶圆安装 芯片切割 IC 封装 芯片附着 IC 键合 引线键合 热超声键合 倒装芯片 晶圆键合 胶带自动键合 (TAB) IC 封装 烘烤 电镀 激光打标 修整和成型 IC 测试
热超声键合过程中,金球和铝合金金属化层之间的焊接是通过界面处金和铝的固态混合以及金铝金属间相的形成而发生的。由该金属间相组成的总键合面积的比例通常称为金属间覆盖率,缩写为 IMC。超声波对于通过摩擦形成 IMC 至关重要 [1-3],但在整个界面上并不均匀,开始时是离散的岛状物,在超声波的作用下生长,最终将球锚定在铝金属化层上。如果优化了键合参数,大部分界面面积(多达 70-80%)应由 IMC 组成。在拉力测试期间,金-铝界面保持机械强度所需的最小 IMC 量只需略大于导线的横截面积。但是,如果界面大面积未键合,空气、空气中的污染物和环氧模塑料就会渗入球底,从而导致后续组装步骤中发生氧化和腐蚀反应。因此,最大化 IMC 是优化球键合工艺的重要部分。IMC 的测量通常是通过使用不会侵蚀金属间化合物或金的 KOH 溶液溶解 Al 键合垫 [4] 并观察球底面来完成的。确定形成坚固球键合所需的 IMC 的精确量并不是一门精确的科学,但经验准则是,真正键合球面积的 70% 应由 Au-Al 金属间化合物组成。有两种常用方法可用于查看和记录金球底面图像中的金属间化合物覆盖率,以便随后使用图像分析软件进行测量。第一种是使用光学显微镜 (LM),第二种是使用扫描电子显微镜 (SEM)。SEM 要求将样品镀金,并放置在 SEM 腔中,然后抽真空并进行检查,而 LM 不需要特殊且耗时的样品制备,被认为比 SEM 更快、更容易。但是,每种方法都有其优点,并且需要了解某些因素,尤其是 LM,才能正确测量 IMC。光学显微镜可以使用不同的照明模式,与 SEM 不同,在显微镜和照明下对样品进行对准可能会使 IMC 的识别和测量变得复杂,并且很容易导致错误的测量。但是,虽然覆盖率的光学评估更快,但也更难以解释。在半导体封装的组装工程鉴定中,由于耗时较少,因此似乎更倾向于采用光学评估金属间覆盖率。在新封装鉴定的组装工程阶段,可能需要通过 SEM 测量 IMC 来获得详细信息。但是,在大规模生产过程中,光学测量可能更合适,因为它们耗时较少。本文的目的是提供