对高离子电导率的Na-ion固体电解质(SES)的摘要设计和与阴极隔离的出色的化学/机械兼容性对于全稳态的Na-ion电池(Assnibs)仍然具有挑战性。在这项研究中,我们成功设计和合成了一种新型的无定形NATACL 6 HALIDE SE,其在室温下为4 3 10 3 S cm 1的离子连续性为4 3 10 3 s cm 1。异常的离子电导率是由独特的重建无定形多聚(TACL 6)八面体网络产生的,其通过高能机械化学反应削弱了Na-Cl相互作用。值得注意的是,与Na 3 V 2(PO 4)3(PO 4)3(PO 4)3(pO 4)3(pO 4)在Assnibs中的阴极相结合时,无形的NATACL 6卤化物表现出显着的机械性能,化学/电化学稳定性以及出色的电化学性能,从而导致了显着的初始良性效率,可恢复99.60%的效率(85%),并呈现出色的速度(85%)。长周期pro文件(4,000/600/1,500循环在3/1/0.5 C)后(81%/95%/98%的容量保留)。这一发现超级离子无定形的Na-ion Halide SES为提高高性能Assnib的有前途的途径。
CO4:识别同步设计中的问题并加以解决。讲座:使用 HDL 进行数字设计方法的介绍 - 设计流程 - 建模抽象级别、门级模型、RTL 模型、行为模型 - 仿真和综合 - ASIC/FPGA 建模 - 语言概念 - 数据类型和运算符 - 结构、数据流和行为模型 - 层次结构 - 组合和顺序电路描述 - 连续和程序分配 - 阻塞和非阻塞分配 - 任务和功能 - 接口 - 延迟建模 - 参数化可重用设计 - 系统任务 - 编译器指令 - 测试平台。数据路径和控制器 - 复杂状态机设计 - 建模 FSM - 状态编码 - 建模内存 - 基本流水线概念 - 流水线建模 - 时钟域交叉 - 算术函数建模 - 同步设计的障碍:时钟偏差、门控时钟、异步输入、同步器故障和亚稳态 - 同步器设计 - 同步高速数据传输 - 时序分析。综合简介 - 逻辑综合 - RTL 综合 - 高级综合、组合逻辑综合、优先级结构、带锁存器和触发器的时序逻辑 - 无意锁存器 - 状态机综合 - 寄存器和计数器 - 时钟 - 循环 - 代码优化 - 设计示例 - 可编程 LSI 技术 - PLA/PAL/PLD - CPLD 和 FPGA - Xilinx/Altera 系列 FPGA - 可编程片上系统 - Zynq SoC 设计概述。实践课程:HDL 模拟器简介、设计和测试平台代码、使用波形查看器进行回溯和调试 – 使用结构、数据流和行为模型对组合/时序逻辑电路进行建模 – 以不同风格对有限状态机进行建模 – FPGA 的综合和后端流程 – 在可重构设备上实现数字电路/系统 – 使用 ILA 进行调试 – 创建自定义 IP 并重复使用。
低轨道(LEO)卫星星座凭借低时延、全球覆盖等优势,可以与地面5G/6G移动通信系统形成有效补充,为互联网的宽带接入和各类业务提供基础设施支撑。但由于该网络横跨陆、海、空等多个层面的空间特殊性,面临“易攻”与“难守”的困境。同时,随着数字化转型浪潮的加速,空间互联网面临的软件供应链安全风险日益凸显。目前尚无针对空间互联网全生命周期的安全仿真验证平台。因此,本研究设计基于数字孪生的空间互联网超大型科学基础设施Space Spider,实现空间互联网各要素地面仿真,建立空间互联网攻防环境,支撑核心技术验证。此外,我们还提出了Spiderland,一个面向空间互联网应用和安全研究人员的开放实验平台,进行模拟和攻防实验。
印度半导体计划旨在促进印度半导体行业的发展。传统的本科课程(如电气和电子)将为 VLSI 领域高等教育提供一些基础。该计划旨在通过训练有素的本科生为未来几年的半导体行业提供人才。本课程旨在使用工业标准 EDA 工具培训 VLSI 核心领域的学生,以了解当前情况和最新技术。完成本课程后,学生将获得 VLSI 专业化和芯片设计方面的理论知识和实践技能。本课程由 VLSI 专业化的设备级、设计、制造和工具高级课程提供支持。
- Bryan Briney(Briney@scripps.edu)-Wyatt J. McDonnell(通讯@10xgenomics.com)摘要开发疫苗和治疗剂的开发,这些疫苗和治疗剂对已知和新兴的冠状病毒广泛有效,这是紧迫的优先事项。当前开发泛病毒对策的策略主要集中在冠状病毒尖峰蛋白的受体结合结构域(RBD)和S2区域。目前尚不清楚N末端结构域(NTD)是否是通用疫苗和广泛中和抗体(ABS)的可行靶标。此外,许多靶向RBD的ABS已被证明容易受病毒逃生的影响。我们使用多重的单位杆编码抗原在高通量单细胞工作流程中筛选了Covid-19幸存者和疫苗的循环B细胞库,以分离9,000多个SARS-COV-2-特异性单氯基ABS(MABS),从而使SARS-COV-COV-COV-2 SPECICIDIC ABSEIDICABERIDIC ABSIDICIDICABSIFICICADEIDIC。我们观察到个体之间的许多克隆聚结的实例,这表明AB反应经常在相似的遗传溶液上独立汇聚。在回收的抗体中是TXG-0078,这是一种公共中和的mAB,它结合了冠状病毒尖峰蛋白的NTD超级站点,并识别出多种α-和β-核纳病毒的收集。TXG-0078实现了其出色的结合宽度,同时利用相同的VH1-24可变基因特征和重型链的结合模式在其他NTD超级特异性特异性中和中和腹肌中可见,具有较窄的特异性。我们还报告了CC24.2的发现,CC24.2是一种泛核病毒中和MAB,它针对新型的RBD表位,并针对所有测试过的SARS-COV-2变体(包括BQ.1.1.1和XBB.1.5)显示出相似的中和效力。 TXG-0078和CC24.2的鸡尾酒提供了针对SARS-COV-2的体内挑战的保护,这表明将来可能在耐种的治疗性AB鸡尾酒中使用,作为泛环病毒疫苗设计的模板。我们还报告了CC24.2的发现,CC24.2是一种泛核病毒中和MAB,它针对新型的RBD表位,并针对所有测试过的SARS-COV-2变体(包括BQ.1.1.1和XBB.1.5)显示出相似的中和效力。TXG-0078和CC24.2的鸡尾酒提供了针对SARS-COV-2的体内挑战的保护,这表明将来可能在耐种的治疗性AB鸡尾酒中使用,作为泛环病毒疫苗设计的模板。
引入缺陷,会导致随机DW运动和较高的临界电流密度71。(b)在拟议的概念中,FM层和p- W层通过低压(LP)和低功率沉积的W膜分开。插入该LP-W有望减少W堆栈的粗糙度和FM层中的缺陷。(c)样品代码表和沉积样品中每一层的厚度。(d)膜样品的强制性(h C)沿沿非平面方向施加的场进行测量。所有样品均显示PMA和H C是LP-W膜的最低,而HP-W的存在增加了H C。(e)不同薄膜的堆栈电阻率的图。〜120 cm的堆栈电阻率通常被认为是期72的基线。大多数样品显示出接近该基线的电阻率(请参阅补充部分S1.2和S2.3)。
资格:应聘者应至少拥有电子与通信/化学/仪器仪表/电气/计算机科学/信息技术或同等专业的二年级及以上文凭。录取:申请表将由加尔各答贾达普尔大学电子与电信工程系 IC 中心发放,或从我们的网站 [www.jaduniv.edu.in 或 https://jadavpuruniversity.in] 下载。填写好的申请表应于周一至周五上午 11 点至下午 5 点送达 IC 中心。课程费用:3,540/- 卢比(3,000/- + 18% GST)的即期汇票,抬头为“REGISTRAR, JADAVPUR UNIVERSITY”,可在加尔各答的任何国有分支机构支付。一旦缴纳,课程费用将不予退还。不提供宿舍住宿。附件:一张 PP 尺寸照片、一张 Madhyamik 准考证复印件、学期成绩单 [需附上成绩单/证书的认证/自认证副本]
DNA寡核能全长产品耦合效率图1。IDT专有平台比其他供应商具有更好的耦合效率,后者在您的订单中提供更全长的寡核苷酸。耦合效率的少量增加(≤1%)会导致全长产品产量可测量增加。曲线根据99.4%的耦合效率(IDT Oligos,n = 126)和99.1%(其他供应商,三个不同供应商的n = 134),使用公式,使用公式,全长百分比product =(eff)(eff)(n – 1) *100 is n is n is n is n in – 99.4 = 4.4 = 4.4 = 4.4 = 4.4 = 4.4 = 4.4.4.4.4.4.4.4.4.4.4. n = coupling效率(例如,99.4)使长度为n的寡核所需的耦合反应数。
科目名称 代码 LTP 学分 学时 第一学期 VLSI 系统的数学基础 EC6L051 3-0-0 3 3 模拟 CMOS VLSI 设计 EC6L052 3-1-0 4 4 数字集成电路设计 EC6L053 3-1-0 4 4 选修课-I 3-0-0/3-1-0 3/4 3/4 选修课-II 3-0-0/3-1-0 3/4 3/4 设计和仿真实验室-I EC6P051 0-0-3 2 3 半导体器件实验室 EC6P052 0-0-3 2 3 研讨会-I EC6S051 0-0-3 2 3 总计 23/25 26/28 第二学期 VLSI 设计的 CAD EC6L054 3-0-0 3 3 VLSI 测试EC6L055 3-0-0 3 3 选修课-III 3-0-0/3-1-0 3/4 3/4 选修课-IV 3-0-0/3-1-0 3/4 3/4 选修课-V 3-0-0/3-1-0 3/4 3/4 设计与仿真实验室-II EC6P053 0-0-3 2 3 可重构计算实验室 EC6P054 0-0-3 2 3 研讨会-II EC6S052 0-0-3 2 3 总计 21/24 24/27 第三学期论文第一部分 EC6D051 0-0-0 16 16 研究评论论文-I EC6D052 0-0-0 4 4 总计 20 20 16 16 研究评论论文-II EC6D054 0-0-0 4 4 总计 20 20 课程总学分 84/89 90/96
本文的本版本已被接受以供出版,经过同行审查(适用),并受到Springer Nature的AM使用条款的约束(https://www.springernature.com/gp/gp/open-research/policies/accepted-manuscript-terms),但并不是记录和未反映后的记录和任何更正的版本。记录版本可在线获得:https://doi.org/10.1007/s12274-021-3475-z。