Tim A. Coombs 1†,Qi Wang 1,A。Shah 1,J.Hu 1,L。Hao 1,I。Patel 1,H。Wei 1,Y。Wu 1,Thomas Coombs 1,4
无处不在的真实材料无处不在,可能会对量子相跃迁产生巨大影响。源自该疾病增强的量子波动,量子格里菲斯(Griffiths)奇异性(QGS)已被揭示为低维超导体的量子关键性的普遍现象。然而,由于波动效应较弱,在三维(3D)超导系统中检测实验的QGS非常具有挑战性。在这里,我们报告了与从3D超导体到Anderson临界绝缘体MGTI 2 O 4(MTO)中量子相过渡相关的QGS的发现。在垂直磁场和平行磁场下,在接近量子临界点时的动力学临界指数会发散,证明存在3D QGS。在3D超导体中,MTO显示出相对强大的波动效应,其特征是广泛的超导过渡区域。增强的波动可能是由安德森本地化的迁移率边缘引起的,最终导致发生3D量子相变和QGS。我们的发现提供了一种新的观点,可以理解强烈无序的3D系统中的量子相变。
[15] Watanabe Tomonori等人:低温工程39,553(2004)。[16] Iimi Akira等人:低温工程42,42(2007)。[17] A.P.Malozemoff和Y. Yamada:超导100年,第11章“第二代HTS Wire”,P689(CRC出版社,2011年)。和Izumi Teruro,Yanagi Nagato:血浆和核融合杂志93,222(2017)。大量的制造方法,包括兔子底物,mod(化学溶液方法)和真空蒸发方法。 [18] http:// www。istec。或。JP/Tape-Wire/Labo-Tape-Wire。html,使用PLD方法和MOD方法(化学溶液方法)的金属棒的高性质。[19] T. Haugan等。,自然430,867(2004)。[20] Y. Yamada等。,应用。物理。Lett。 87,132502(2005)。 [21] H. Tobita等。 ,超级条件。 SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Lett。87,132502(2005)。[21] H. Tobita等。,超级条件。SCI。 技术。 25,062002(2012)。 [22] Matsumoto Kaname:应用物理77,19(2008)。 [23] Yamada Shigeru:应用物理93,206(2024)。 [24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。 [25] Miyata Noboru:材料37,361(1988)。 [26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。 ,科学。 Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。SCI。技术。25,062002(2012)。[22] Matsumoto Kaname:应用物理77,19(2008)。[23] Yamada Shigeru:应用物理93,206(2024)。[24] Y. Yamada,第36届国际超导性国际研讨会(ISS2023),Takina,新西兰惠灵顿,11月28日至30日,2023年。[25] Miyata Noboru:材料37,361(1988)。[26] https://www.t.u-tokyo.ac.jp/press/pr2023-06-28-001 [27] A. Stangl等。,科学。Rep。11,8176(2021)。 [28] R. Hiwatari等。 ,血浆融合res。 14,1305047(2019)。 [29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。 [30] D. uglietti,超越。 SCI。 技术。 32,053001(2019)。Rep。11,8176(2021)。[28] R. Hiwatari等。,血浆融合res。14,1305047(2019)。[29]在美国休斯顿大学申请2023年国际申请指挥的布兰登·索博姆(Brandon Sorbom)(2023年)。[30] D. uglietti,超越。SCI。 技术。 32,053001(2019)。SCI。技术。32,053001(2019)。
1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。 3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。 3.,1111 Budapest,匈牙利5物理系,科学院,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 G€欧特堡,瑞典7号,瑞典7 CNR-Spin,C/O大学Salerno的研究,通过Giovanni Paolo II 132,84084 Fisciano,意大利萨勒诺8物理学系“ E. R. Caianiello”,“ E. R. Caianiello”,萨勒诺大学的大学,通过Giovanni Paolo II 132,84084 Fisciano,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,salerno,salerno,salerno1 Department of Physics, University of Kontanz, Universit € AtsTraße 10, 78464 Konstanz, Germany 2 Nest, Nanoscienze-Cnr Institute Normal School, Piazza San Silvestro 12, 56127 Pisa, Italy 3 MTA-BME SuperConducting Nanoelectronics Momentum Research Group, M € M € M € M € Ugyetem RKP。3.,1111布达佩斯,匈牙利4物理系,布达佩斯大学技术与经济学,M€uegyetem RKP。3.,1111 Budapest,匈牙利5物理系,科学院,许多大学,Al-Geish St.,31527 Tanta,Gharbia,Gharbia,埃及6 Microtechnology and Nanoscience系,Chalmers Technology,41296 G€欧特堡,瑞典7号,瑞典7 CNR-Spin,C/O大学Salerno的研究,通过Giovanni Paolo II 132,84084 Fisciano,意大利萨勒诺8物理学系“ E. R. Caianiello”,“ E. R. Caianiello”,萨勒诺大学的大学,通过Giovanni Paolo II 132,84084 Fisciano,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,Salerno,salerno,salerno,salerno
图4。(a)在室温下测量的Pr 4 Ni 3 O 10的XRD模式,外部压力增加到75.0 GPa。X射线波长λ为0.6199Å。(b)在2.2 GPa时,Pr 4 Ni 3 O 10的典型Rietveld精炼。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示PR 4 Ni 3 O 10在P 2 1 / A空间群中的Bragg反射的峰位置。(c)在24.2 GPA时,典型的Rietveld Pr 4 Ni 3 O 10的细化。实验和计算的模式分别由黑星和红线指示。图形底部显示的实线是残余强度。垂直条表示Pr 4 ni 3 O 10在I 4 /mmm空间组中的Bragg反射的峰位置。(d)(110),(004),(11 4ത),(114),(024)和(22 1ത)峰位置在从Rietveld细化结果中提取的压力下的峰位置的演变。(e)晶格参数a,b和c的压力依赖性在p 2 1 / a(黑色)和i 4 / mmm(红色)空间组中从同步XRD XRD结果中提取的PR 4 Ni 3 O 10。(f)Pr 4 Ni 3 O 10在P 2 1 / A(黑色)和I 4 / MMM(红色)空间组中的体积依赖性。p 2 1 / a相位的三阶桦木拟合方程从2.2 GPa到75.0 GPa,而I 4 / mmm相位为13.7 GPa至75.0 GPa。
舍布鲁克大学 (UdeS) 重视社区内就业的公平、多样性、平等和包容性,并邀请所有符合条件的个人申请,特别是女性、少数族裔、原住民和残疾人,以遵守《魁北克法案》中关于在公共机构平等就业的规定。筛选和评估工具可以根据残疾人提出要求的需求进行调整,并且完全保密。舍布鲁克大学还鼓励所有性取向和性别认同的人申请。加拿大人和永久居民将获得优先考虑。了解有关 UdeS 的公平、多样性和包容性的更多信息。
摘要:本文提出一种结合卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的混合神经网络(HNN)来提取材料的高级特征用于超导体的临界温度(T c)预测。首先,通过从材料计划(MP)数据库中获取73,452个无机化合物并构建原子环境矩阵,通过对原子环境矩阵进行奇异值分解(SVD)得到87个原子的向量表示(原子向量)。然后,利用所得原子向量按照超导体化学式中原子的顺序实现超导体的编码表示。使用12,413个超导体训练的HNN模型的实验结果与三种基准神经网络算法和多种机器学习算法进行了比较,采用了两种常用的材料表征方法。实验结果表明,本文提出的HNN方法能有效提取超导体原子间的特征关系,对T c 的预测具有较高的准确率。
我们很高兴提出问题号超导新闻论坛的第57卷,其中包括2024年9月在盐湖城庆祝的应用超导会议的23个新演讲,该奖项摘要在那里颁发了颁奖典礼,并宣布了Guy Deutscher。首先,包括来自ASC-24的四个全体会谈,对应于:Ezio Todesco博士,Kazumasa Iida博士,Alex Gurevich博士,Alex Gurevich博士和Kenneth Segall博士。我们提醒您,在ASC-24进行的所有全体会议的视频录制也将在ASC-24网站的某个阶段包括在内。我们包括与几个会议相对应的ASC-24的19次邀请演讲,我们希望能够增加未来SNF问题中受邀演讲的数量。首先,我们包括与普通大型会议相对应的三场演讲,六次对应于两个大型特殊会议的对话和两个对应于联席会议大规模材料的联席会议的演讲。前三个对应于Min Zhang博士,LoïcQuéval博士和Paolo Ferracin博士。特殊会议的人由:Ziad Melhem博士,Sastry Pamidi博士,Kathleen Amm博士,D。ScottHolmes博士和Mark Bird博士(超导全球联盟); Stuart Wimbush博士(融合公私合作伙伴关系); Brian Labombard博士和Sam Tippetts博士(联席会议:非绝缘的Rebco磁铁真的是自我保护的吗?)。第二,我们包括四个与材料会议相对应的演讲,一个来自普通会议,三个来自材料特别会议。第一个对应于Teresa Puig博士的演讲,其他三个对Mike Sumption博士,E。Hellstrom博士和Xavier Obradors博士(超导材料的挑战和机会)。第三,我们从普通电子会议中选择了两次演讲,并从电子特别会议上选择了两次演讲。前两个谈话对应于Naoki Takeuchi博士和Logan Howe博士。在特别会议上提出的那些人由:Yue Jiang博士和Elisabeth van Assadelft博士(用于轴突搜索的超导量子传感)。This SNF Issue also includes a list, and some images, of the Awardees recognized by IEEE – CSC at ASC-24 for: Continuous and significant contributions in the field of applied superconductivity (Large Scale and Materials), Sustained service to the applied superconductivity community, Fellow class, Van Duzer Award, Entrepreneurship award and Graduate Study Fellowships in applied superconductivity.最后,我们在“ Memoriam”部分,of.来自特拉维夫大学的Guy Deutscher。