混合超导体 - 触发器设备为固态量子信息处理提供了独特的优势。特别是,自十年前的成立以来,Gatemon Qubit已被证明是一个多功能的实验平台。对于所有类型的Qubits,理解和克服的破坏性是向大规模量子计算进展的重要部分。在本论文中,提出了与GATEMON中的分层有关的三个不同的研究。首先,在有限的磁场中研究了在Inas纳米线中形成的带有完全覆盖的壳的gatemon。在应用领域中调查该系统的是可能存在Majorana零模式的可能性,该模式可用于防止逆转。观察到量子转换频率对磁场的非单调依赖性被观察并解释为破坏性的小公园效应。没有观察到有限的主要耦合(E M)的特征。通过测量值的电荷分散体,将上限放置在E m / h <10mHz时。接下来,研究了纳米诺威氏菌在纳米线gatemon中诱导的奇偶校验切换。准颗粒中毒会导致逆转状态,并且是超导Qubits损失的重要来源。在零磁场时,发现切换在100 ms的时间尺度上发生。随着温度或磁场的增加,切换速率被观察到第一个常数,然后呈指数增加,这与共存非平衡和热准粒子的常规图片一致。在零磁场上缓慢的平价切换对于gatemon连贯时间的未来发展有希望。最后,提出了对基于2DEG的盖特尼人的早期结果,其多个大门接近约瑟夫森交界处。
量子纠缠是一种以距离分离的量子状态之间非局部相关性为特征的现代物理学中的基本现象,它不仅在量子信息理论中,而且在高能量物理学,凝结物质理论和重力理论中都引起了广泛的关注。在量子场理论(QFT)中,量子纠缠的各种度量已被证明是表征和分类物质不同阶段的必不可少的工具,尤其是托管阶段[1,2],同时还捕获关键系统中的普遍缩放行为[3-6]。此外,量子纠缠通过全息原理[7,8]发现了与引力物理学的意外联系,从而对时空的复杂结构产生了新的视角,包括那些管理黑洞物理学的那些,以及QFT的非扰动方面。(有关评论,请参见[9-13]。)纠缠r´enyi熵(ERE)是量化量子系统不同部分之间共享的量子纠缠量的主要度量之一。它们是对
摘要 - 本文介绍了具有螺旋形对称性的超导和电阻线的建模,并受到外部场和运输电流的影响。螺旋结构为3-D,因此在笛卡尔坐标系统中产生计算密集型模拟。我们在本文中表明,通过使用坐标系统的螺旋体系统,可以解决要解决的问题,从而大大降低了综合成本。我们首先引入了最新方法,并将其应用于螺旋形的对称边界条件(例如,具有或没有传输电流的轴向外部磁场)的H-φ-构造,重点是功能空间离散化。然后,我们将方法扩展到一般边界条件(例如横向外部磁场),并使用线性材料呈现数值结果。,我们讨论了由嵌入在电阻基质中的超级传导灯泡制成的复合线中的频率损失。最后,我们为使用非线性材料的广义模型提供了前景。
简介。在非中心对称超导体[1]中的磁性电源最近引起了极大的关注,尤其是在其在非核心超导反应中的实验应用中[2],例如,如最近的综述[3-6]。特别是,Edelstein磁电效应是由应用超电流引起的自旋极化的产生,而其反场景是二极管效应,即,在两个相反的方向上,临界电流是不同的,在存在外部磁性的情况下会产生的两个相反的方向。这些现象的根本原因之一是违反了由旋转轨道相互作用或不均匀的磁性交换场引起的空间反演象征,该磁性磁性交换场是对能量依赖的动量旋转分裂的作用[7-9],所有这些[7-9]都引起了电子旋转旋转极化之间的耦合和电荷之间的耦合[7]。在本文中,我们考虑了一个具有d-波对称性的共线抗磁性(AFM)订购参数的中心对称金属[11-14]。这种AFM阶诱导了传导费米子的费米表面的特定D波动量依赖性旋转分裂[7-9]。最近在参考文献中审查了各向异性磁顺序的扩展对称分类。[15 - 17]。显示此功能的代表性材料包括,例如,类型AFMS:金属RUO 2,Mn 5 Si 3,VNB 3 S 6,半导体MNTE等[15-20]。此外,最近在thinfms ruo 2中观察到了应变稳定的超导性,tc≈1。[31]。8 K取决于纤维厚度[21-23]。受到最近的实验进展的促进,对超导性的D-波AFM交换耦合的理论研究成为了一个密集的研究领域,包括对Andreev反射的研究和Josephson Current [24-28],在D -Wave Superconcontos in D -Wave Superconcontos ft d -Wave af -Wave afm [29]中的无综合状态[29],或者是30岁的MAD [29],或者有关最近的精彩文章,请参见参考文献。在这种情况下,超导性和磁性的问题自然出现。清楚地,在肌脱肌对称超导体中,与极性超导体中的Edelstein效应相反,诱导的载体的自旋极化与超循环的均匀功能成正比,并表现出D -Wave对称性。
堆叠自由度是调整材料特性的关键因素,并且已在分层材料中进行了广泛的研究。最近发现Kagome超导体CSV 3 SB 5在T CDW〜94 K下方显示出三维CDW相位。尽管对内平面调制进行了彻底的研究,但平面外调制仍然模棱两可。在这里,我们的极化和温度依赖性拉曼测量结果揭示了C 6旋转对称性的破坏,并且在大约120°的三个不同域的存在下,彼此之间存在三个不同的域。观察结果表明,CDW相可以自然解释为2C交错阶相,相邻层显示相对π相移。此外,我们在大约65 K处发现了一阶结构相变,这是由于堆叠断层而引起的堆叠顺序diSorder相变,并受到CS相关唱片模式的热磁滞行为的支持。我们的发现突出了CSV 3 SB 5中堆叠自由度的重要性,并提供了结构见解,以理解超导性和CDW之间的纠缠。
常规的超导电子[1]依赖于超导电线和不同类型的弱环节的超电流和准粒子电流转移的相结合。这些组合可以实现各种功能性IES,例如磁力测定法[2],电流或电压放大器[3],电压标准标准[4],以及基于电阻[5]的检测器或依赖于系统的非平衡状态的电感[6]。与他们的半导体库型相比,超导电子设备缺乏基本元素:非二极管设备,例如二极管或热电元素。不存在非股骨能力可以归因于超导状态的内在电子 - 孔对称性。然而,这种对称性可以使用磁和超导元件的组合[7,8],从原则上讲,它可以实现强大的非重生或功绩的热电图。这些现象可用于创建超导旋转隧道二极管[9],用于超导逻辑和低温记忆的构件,或诸如超导向器 - forromagnet热磁性检测器(Suptrops-Inctife in Astrackect in Astrocke in Astrops-Ickmicys)的新颖类型的检测类型,例如超过forromagnet theroeecnet theroelec-teric tric检测器[10] ],例如,在安全成像中使用了Terahertz-radadiation感测[12]。非常明显,在SFTED中,吸收的辐射直接生成所需的测量信号,而无需单独的偏置电流或电压。
基于超导电路的超导量子比特由超导电容器和具有 transmon 几何的约瑟夫森结组成,广泛应用于高级量子处理器,追求可扩展的量子计算。transmon 的量子比特频率的调整依赖于超导环路中两个超导体-绝缘体-超导体 (S-I-S) 约瑟夫森结的超电流之间的磁通量相关干扰。基于超导体-半导体-超导体 (S-Sm-S) 材料的约瑟夫森结为门可调 transmon 提供了一种可能性,称为“gate-mon”,其中量子比特频率可以通过静电平均值进行调整。在 III-V 材料平台上实现的 gatemon 显示出 transmon 替代品的令人瞩目的发展,但在可扩展性方面仍然存在一个大问题。硅锗 (SiGe) 异质结构由于其高空穴迁移率和 Ge-金属界面的低肖特基势垒而成为承载混合器件的潜在平台之一。此外,与硅基半导体行业的兼容性是扩大量子比特平台的一个有力优势。在本论文中,我们基于 SiGe 异质结构中的 Al-Ge-Al 约瑟夫森结开发了门控。首先,建立了自上而下方法中约瑟夫森场效应晶体管 (JoFET) 的稳健制造配方。我们对 JoFET 进行了详尽的测量,以研究它们随栅极电压、温度和磁场变化的特性。这些器件显示了临界电流 (I C ) 和正常态电阻 (R N ) 的栅极可调性。估计这些器件具有高透明度的超导体-半导体界面,SiGe异质结构上的高 I C R N 乘积证明了这一点。在有限电压范围内,观察到对应于多个安德烈夫反射 (MAR) 的特征。然后,我们在 SiGe 异质结构上制造和表征氮化铌 (NbN) 超导谐振器。我们在传输模式下测量谐振器,并从传输系数 (S 21) 中提取谐振频率 (f r)、内部品质因数 (Q i) 和耦合品质因数 (Q c)。随后,我们开发了制造工艺,将与电容器分流的 Al-Ge-Al 结(换句话说,gatemon)集成到谐振器方案中,并根据设计进行制造。我们在其中一个制造的 gatemon 中演示了反交叉特性。使用双音光谱技术映射门控器的谐振频率,发现它是门可调的。量子位具有较大的光谱线宽,这意味着相干时间较低。此外,我们对超导量子干涉装置 (SQUID) 几何中的结进行了电流相位关系 (CPR) 测量。我们可以证明结构成非正弦 CPR。此外,在辐照结的电流-电压特性曲线中观察到整数和半整数 Shapiro 阶跃。这表明我们的结具有 cos 2 φ 元素,这可以为受保护的量子位开辟另一种可能性。
我们提出的不同运输测量值在最近发现的重毛力超导体UTE 2中,沿着以身体为中心的原晶结构的易于磁化A轴施加了磁场。热电功率随温度高于超导过渡的温度而变化,T SC = 1。5 K,表明超导性在费米液体方向发展。作为场的函数,热电学功率显示了连续的异常,这归因于场诱导的费米表面不稳定性。这些费米 - 表面不稳定性出现在磁极化的临界值处。值得注意的是,与沿B-轴施加的磁性的第一阶metAgnetic跃迁相比,磁化强度(0.4 µ b)的磁性临界值(0.4 µ b)的最低磁场不稳定发生。低温下估计的电荷载体数量揭示了与LDA计算不同的金属基态,表明强电子相关是该化合物中的主要问题。
•至关重要的核物理学: - FRIB - 高功率ECR来源和高刚度光谱仪 - EIC - 复杂的相互作用区域磁铁 - JLAB - JLAB - 中心至12GEV升级•至关重要的基本能源科学至关重要的基本能源科学 - 新颖的端站磁铁 - 超导器 - 超导器 - 超导向器•融合的融合供货量和级别的融合式tokamaks and Stellactors-尤其是Compactact tokamaks
超导间隙对称性对于理解潜在的超导性机制至关重要。角度分辨光发射光谱(ARPES)在确定非常规超导体中的间隙对称性方面起着关键作用。然而,到目前为止,ARPE只能测量超导间隙的大小,而不能测量其相位的幅度。该相必须由其他相敏感技术检测到。在这里,我们提出了一种直接检测ARPES超导间隙标志的方法。使用众所周知的D波间隙对称性,在Cuprate超导体BI 2 SR 2 SR 2 CACU 2 O 8+δ中成功验证了此方法。当两个频段具有较强的带间相互作用时,超导状态下所得的电子结构对两个频段之间的相对间隙标志敏感。我们目前的工作提供了一种检测间隙标志的方法,可以应用于各种超导体,尤其是具有多个轨道的超导体,例如铁基超导体。