在介电绝缘的超导磁体中需要聚合物[1],以及浸渍由NB 3 SN等脆性导体制成的磁铁线圈[2]。在未来的粒子加速器中,例如未来的圆形对撞机(FCC)项目[3,4],磁体将暴露于日益高的辐射剂量。为例,HL-LHC [5]内三重线圈中的预测峰剂量为30 mgy [6]。环氧树脂是具有良好的介电和机械支撑物的热固性聚合物,这些聚合物通常用于磁铁的大管浸没,用于电动机和发电机的线圈绕组,以及作为纤维增压组合的基质材料。这种环氧树脂的辐射损伤已被广泛研究[7]。以前,我们已经描述了不同环氧树脂系统在环境空气中辐射期间潜在用于超导磁体的老化[8]。由于超导磁体中的聚合物在没有氧气的情况下在低温温度下被照射,因此在本研究中,我们研究了辐射温度和大气的影响。为此,我们在三种不同的环境中辐射了相同的环氧树脂:在20℃,在环境空气或惰性气体中,并浸入4.2 K的液态氦气中。为了评估衰老过程并确定衰老率,我们采用动态机械分析(DMA)。DMA存储和损耗模量演变揭示了交联和链分裂对玻璃过渡温度(T G)的竞争影响以及大分子交联之间的分子量。辐照环境,尤其是辐射温度,可能会大大影响辐射引起的环氧树脂衰老。
高温超导 (HTS) 带可以通过非常细的导线传输非常大的电流,而且没有电阻。这意味着 HTS 带可以缠绕成不产生热量的轻质高场电磁铁。因此,HTS 电磁铁在太空领域非常有用,因为太空领域对尺寸和重量有极大的限制,而且很难通过辐射方式消散传统铜电磁铁产生的热量。因此,HTS 被认为是一种小型化技术,能够在小型卫星上产生高磁场,用于电力推进、辐射屏蔽、姿态控制和感应储能等应用。HTS 设备需要在低温下运行,通常在 77 K 或以下。使用电制冷机可以在太空中保持这些低温。制冷机的性质及其与 HTS 电磁铁的集成方式对 SWaP(尺寸、重量和功率)要求有重大影响。本文介绍了旨在集成到立方体卫星中的 HTS 电磁铁设计的建模和初步物理测试。这项工作采用数值建模和实验相结合的方法,研究了单个微型低温冷却器是否可以将 HTS 电磁铁冷却到临界温度以下。使用 Sunpower CryoTel MT 低温冷却器,重量仅为 2.1 千克,长度和直径分别仅为 243 毫米和 73 毫米,仅使用 40 W 的输入功率即可获得低于 75 K 的电磁铁温度,同时保持 40 °C 的热端温度。这表明 HTS 电磁铁可以使用微型单级低温冷却器在小型卫星上运行。
愿景:成为世界一流的超导和电磁学团队,创造超导磁体技术的未来。磁体部门员工在以下领域发挥领导作用:• 超导磁体技术• 磁体开发、制造和测试,应用于加速器、科学、聚变和工业能力:• LTS 和 HTS 超导磁体 - 10m 线圈绕制能力、Nb 3 Sn 炉 4.2 m• 直接绕线磁体和设施 - IR 和特种磁体、精密磁场质量、2.5m 线圈绕制能力• 磁体测试设施 - 1.9K、22KA、6.1m 深、71cm 直径。当前优先事项:• 加速器升级项目 - 线圈构造、垂直磁体测试• EIC 磁体 - IR、磁体测量、RHIC 磁体再利用• 磁体开发项目 - HTS/LTS 混合、诊断• 聚变 - INFUSE、ARPA-E (CFS)、MPEX
• 许多红外天文学需要< 3 K,因此不能通过制冷机来满足 – “无制冷剂”超导磁体或SQUID阵列 – 再液化LN 2 、LHe或其他制冷剂 – 热辐射屏蔽的冷却 – 基于HiTc的电子设备的冷却,例如用于电池的微波滤波器
在超导磁磁火车的情况下,《车身车身法案中的超导磁铁》涉及导向器中的悬浮和指导线圈。在超导磁体和引导线圈之间作用的磁力强度与超导磁铁移动的速度成比例(即车身移动的速度),因此车身车身移动的速度越快,悬浮和导向管线圈产生的磁力越强,车身体抬起的磁力就越高。
过去有自己的磁场,其小尺寸导致核心的能量损失,从而导致核心冷却和产生磁场的能力(3)。美国物理学家兼退休的首席科学家詹姆斯·劳尔·格林(James Lauer Green)提议在拉格朗日(Lagrange)1点(L1)(4)上产生磁场。Lagrange点是在空间中的sta tionary位置,在该空间中,在与更大的物体相关的旋转框架内,在小体上作用的引力作用在小体内。在他的学术论文中,绿色提议将人工磁层屏蔽放在L1上,以阻止太阳风,从而始终侵蚀火星大气(4)。他建议这样做可以使痕量气体的积累,从而逐渐形成火星上的微弱气氛。随着时间的流逝,温室气体的存在将有助于使大气变暖,从而使被困的水解冻,然后将其转化为水蒸气。此过程有可能补充火星海洋的大约七分之一(4)。我们的研究重点是通过使用太阳能帆,太阳能电池板和超级电管磁体来进一步发展这一想法,以保护火星免受太阳风的影响并使火星可居住(图1)。为了生成人造磁场,超导磁体提供了有希望的解决方案。它们经常用于医院,用于磁共振成像和诸如核磁共振光谱ETERS,融合反应堆和粒子加速器等科学仪器中(5)。在这些条件下,超导磁体的绕组具有零电阻。这些磁铁表现出降低的电阻和提高的效率,从而可以产生较大的磁场,并具有较低的能量消耗。超导磁体表现出零电阻,并且没有产生热量,从而使它们保持高电流强度(6)。维持零电阻的主要要求是将温度降低到极低的值,这是通过将电气棒网浸入液体氦气中来实现的(6)。为了最大程度地减少气体蒸发,将浓度浸入另一个装有液氮的露水容器中。即使CIR CUIT紧密关闭,提供给电路的电流也会持续到所需的时间。超导磁体非常适合在太空中使用,因为它们消耗的功率很少,并且超导体可以在当前的登角机构中运行,而后者比传统导体高得多(7)。要运输和部署这些磁铁,太阳帆可能是理想的解决方案。太阳帆利用太阳发出的光的压力推动了航天器。太阳能航行消除了燃料的需求,因为它们依靠光子进行运动(8)。为了向磁铁提供能量,可以使用太阳能电池板。当太阳照在太阳能电池板上时,来自太阳的能量
PPMS 是一个完整的测量系统,由低温恒温器、超导磁体和用于进行特性测量的控制电子设备组成。该系统有一个 12 针样品盘,通过低温恒温器侧面的 LEMO 连接器连接。在常规操作期间,样品连接器连接到 PPMS 电子设备,系统的 MultiVu™ 软件控制样品空间的场和温度,同时协调 PPMS 系统中包含的测量电子设备。
11。解释超导磁体在MRI 12中的作用。解释组织消融(冷冻手术)-13。什么是低温火箭推进系统?12。家用冰箱,水冷却器,13。冷藏量,冰植物,14。解释冷藏在食品保存方法,化学和工艺行业中的作用15。描述金属的冷处理,建筑领域,水的脱盐,数据中心。
(1)声发射系统 (2)超声波脉冲接收器 (3)可变光衰减器 (4)闭环低温恒温器(无低温恒温器),基准温度为 1.5 K,配有集成测量电子设备 (5)原子力显微镜(AFM) (6)带有超导磁体和可变温度插件(VTI)的低温恒温器,带有 RF/MW 接线和光耦合器,温度范围为 1.5 K-300 K (7)光学分束器 (8)光纤耦合硅雪崩光电二极管 (9)红外波长范围自由运行单光子探测器(InGaAs-APD) (10)加热和冷冻室