http://www.tasty-indian- coptes.com/indian-dessert-recipes/cake-ceptes/cophate-swiss-roll-recipe-2/
SHI组开发了用于质子治疗的环元,并为医院的治疗做出了贡献。开发了一种新的超导AVF Cyclotron SC230。的直径,高度和重量为2.8m,17m和65t,目前是质子治疗中最紧凑的等应循环基因。使用无低温超导线圈通过高磁场实现了尺寸的尺寸。它的最大光束电流为1000NA。其系统的总功耗低于200kW。本文介绍了开发的超导AVF Cyclotron SC230。
请在此处发现2023年Laboratoire National Des Champs Magn´etiques Intenses(LNCMI)的年度报告。本报告提供了内部和协作科学以及我们的技术活动的完整概述。用于实际应用的磁场通常由永久磁铁(最多1 t)或超导线圈(2023年最多28吨)提供。要创建大于这些值的磁场,需要非常特定的设备,它们非常昂贵(许多M e),并且此类设备的市场相当有限。由于这些原因,高磁场实验室是唯一能够在28吨以上传递此类磁场的实验室。此外,此类磁场下的测量必须具体设计,以便在这些实验室中使用的工具,因此必须在内部设计磁力范围(电子,电子,每个传感器)才能在本机中设计较高的工作。创建这种磁场的设备规模的定期增加使得今天,世界上只有很少的地方正在运营这种设施(欧洲,美国,中国,日本)。“ Laboratoire National des Champs Magn´etiques Intenses”就是其中之一。
本书的起源可以追溯到作者在核磁共振方面的研究(NMR)光谱。现代的NMR光谱仪使用超导磁铁来创建一个非常稳定的磁场。磁铁中的超导线圈载有永不消散的电流。一个人只需要用液体氦气冷却线圈,然后全天候运行。多么惊人的身体现象,称为超导性。了解超导性使作者挖掘出了固态物理学的美丽主题。固体中的电子如何。它们是波浪还是颗粒?为什么某些材料导体和其他不可分割的人是某些材料。我们如何理解从二极管和晶体管到MOSFET,LED和太阳能电池的现代电子设备。这本书试图为所有这一切公正。在写这本书时,我试图回答所有问题,我是IIT Kanpur的电气工程本科生,参加了设备物理课程。我选择了我认为是概念性的主题,并挑战了可视化事物的能力。i涵盖了传统主题,例如固体和声子的频带理论,以诸如电子设备以及令人兴奋的研究领域(如超导性和量子厅效应)等主题。这本书是作为研究单图而写的,但对于作者来说,播种固态世界,描绘了更大的局面,事物是事物并吸收各种概念的地方。这本书旨在用于固态物理学或冷凝物质理论的第一课程。重点更多地放在更大的情况下,可以用练习来代替,周围有许多出色的教科书。作者希望,对于固态物理学广泛领域的研究人员来说,书籍会方便。这是一个机会,可以承认众多我直接和间接地为这一努力提供帮助的人。我要感谢Steffen Glaser教授和Niels Nielsen教授在NMR光谱中进行了多年的出色合作,最终使我开发了这一文字。我要感谢罗杰·布罗基特(Roger Brockett)教授,他帮助我培养了物理学的品味。我感谢IIT孟买的Profes-Sorsumiran Pujari和Soumya Bera,因为他们在凝结的问题上提供了丰富的讲座,这有助于对这个主题重新展示我的看法。我要感谢IIT
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets L. Bottura(1), C. Accettura(1), A. Kolehmainen(1), J. Lorenzo Gomez(2), A. Portone(2), P. Testoni(2) (1) CERN, Geneva, Switzerland (2) Fusion for Energy (F4E), Barcelona,西班牙摘要MUON对撞机是被认为是高能物理学的下一步的选择之一。它面临许多挑战,并非最不重要的是超导磁铁技术。目标和捕获电磁阀是其中之一,大约18 m长的通道由轴向电磁磁铁组成,轴是20 t的1.2 m自由孔和峰场。其中一个主要问题来自核辐射环境,可能影响线圈的稳定操作,及其材料完整性。能量光子会导致较大的辐射热负荷,在冷质量中的几个kW的阶数,并沉积相当大的剂量,几十mgy。中子在10 -3 dpa的水平下造成物质损害。这些值处于超导线圈技术的当前限制。我们在这里描述了目标的概念设计并捕获了螺线管,重点是HTS电缆设计,这在很大程度上是受到麻省理工学院开发的毒蛇概念的启发。我们展示了如何解决特定于选择的HTS电缆的边缘和保护,冷却和机制。引言2021年欧洲粒子物理战略的更新已确定五个高优先级R&D主题将针对高能物理学的下一步[1]。比田间的μ子的回旋半径大得多,因此梁在通道中的绝热膨胀。所确定的主题之一[2]是Muon Collider(MC)的概念设计,该机器可以在能量前沿探索物理。MC可以在非常高能量的情况下提供点状颗粒的碰撞,因为可以在环中加速muon,而不会受到电子经历的同步辐射的严重限制。对于超过3 TEV的质量中心能量,MC可以为通向能量边界的高光度对撞机提供最紧凑,最有效的途径。然而,对高光度的需求面临着由于静止时期短暂的寿命(2.2μs)引起的技术挑战,以及难以生产带有较小散发体的臂线束的困难。应对这些挑战需要协作[3]来发展创新概念,尤其是在超导磁铁领域。[4]最苛刻的挑战之一,本文的重点之一是托管目标和捕获通道的螺线管,该通道产生了宇宙束。muons是由于正质和负亲的衰减而产生的,这些衰变是由短,高强度质子脉冲与固体靶标(例如碳棒)碰撞所产生的。PION生产目标插入稳态的高场螺线管中,其功能是捕获电荷的亲,并引导它们进入创建MUON的衰减通道。沿通道轴的磁场轮廓需要具有特定的形状,目标峰场为20 t,在通道出口的衰减约为1.5 t,总长度约为18 m。场的特征长度约为2.5 m,即