♦ 出色的可靠性和耐用性 G-823A 型包括久经考验的高性能 G-822A 传感器和超小型 CM-201 拉莫尔计数器。此型号提供无与伦比的性能、尺寸、功能和成本效益的多功能性。该系统有两个输出:叠加在 28 VDC 电源上的标准拉莫尔信号(可直接输入到任何 RMS Instruments 的 AARC500 系列实时补偿系统中),以及计数的拉莫尔信号,转换为“nT”并通过 RS-232 输出,以便在任何标准计算机上记录。这种强大的组合也是 G-823B 基站等新型专用型号的基础。G-823A 提供 1 Hz 时 0.002 nT 的灵敏度,最高 40 Hz 时 0.22 nT,可通过软件命令选择。默认配置提供 0.02 nT p-p(0.004 nT/√ Hz RMS),每秒 10 个样本。除了磁力计测量外,CM-201 计数器还包括儒略时间/日期、接受外部同步脉冲的装置和六个 A/D 转换器,用于数字化和记录信号幅度、雷达/气压高度计、EM 或其他
图像传感器设计和性能 CMOS 成像仪、CCD 成像仪、SPAD 传感器 全新颠覆性架构 全局快门图像传感器 低噪声读出电路、ADC 设计 单光子灵敏度传感器 高帧率图像传感器 高动态范围传感器 低压低功耗成像仪 高图像质量;低噪声;高灵敏度 改善的色彩再现 具有特殊数字处理的非标准彩色模式 片上成像系统、片上图像处理 基于事件的图像传感器 像素和图像传感器器件物理学 新器件和像素结构 先进材料 超小型像素开发、测试和特性描述 新器件物理学和现象 电子倍增像素和成像仪 提高 QE、阱容量、减少串扰和改善角度响应的技术 前照式、背照式和堆叠像素及像素阵列 像素模拟:光学和电气模拟、2D 和 3D、设计和模拟 CAD、改进的模型
首先,我们通过灵活的生产和销售运营将生产差异降至最低。此外,通过提高盈利能力和成本效率,我们实现了 390 万辆的全球销量和 5.7% 的营业利润率。去年也是现代汽车公司向电气化转型的重要一年。我们推出了首个专用电动汽车平台 E-GMP(电动全球模块化平台),从而确保了电气化的竞争力。基于 E-GMP,我们推出了全电动紧凑型跨界车 IONIQ 5 和全电动超小型豪华跨界车 GV60,这帮助我们在 2021 年的电动汽车销量达到 141,000 辆,同比增长 44%。在这些进步的同时,我们还设定了到 2030 年实现电动汽车年销量 187 万辆的目标。为了实现这一目标,我们将确保质量差异化的产品竞争力并加强我们的产品阵容;建立稳定的电池采购流程并开发下一代高性能电池;并制定使我们能够迅速融入各种新技术的软件战略。
IBM 苏黎世研究实验室的科学家首次在室温下成功移动和精确定位单个分子。该过程被视为朝着在纳米尺度上进行各种“工程”迈出的重要一步,是使用扫描隧道显微镜 (STM) 的极细尖端完成的。它可以帮助将微型化发挥到极致,并为制造具有特定属性和功能的分子、构建超小型计算机甚至构建能够清洁或修复纳米级电子电路的微型分子机器铺平道路。扫描隧道显微镜是在 IBM 苏黎世研究实验室发明的,其发明者于 1986 年获得诺贝尔物理学奖,在创造这种“纳米宇宙”中发挥了重要作用。STM 不仅可用于以原子分辨率对表面进行成像,还可用于定位单个原子和分子。但是,还有一些问题需要克服。大多数原子和分子都粘附在表面和 STM 尖端上,因此很难以精确控制的方式拾取和释放它们。那些“粘性”较差的原子和分子往往会在室温下抖动和跳跃。虽然可以通过将样品冷却到接近绝对零度来克服抖动问题
首先,我们通过灵活的生产和销售运营将生产差异降至最低。此外,通过提高盈利能力和成本效率,我们实现了 390 万辆的全球销量和 5.7% 的营业利润率。去年也是现代汽车公司向电气化转型的重要一年。我们推出了首个专用电动汽车平台 E-GMP(电动全球模块化平台),从而确保了电气化的竞争力。基于 E-GMP,我们推出了全电动紧凑型跨界车 IONIQ 5 和全电动超小型豪华跨界车 GV60,这帮助我们在 2021 年的电动汽车销量达到 141,000 辆,同比增长 44%。在这些进步的同时,我们还设定了到 2030 年实现电动汽车年销量 187 万辆的目标。为了实现这一目标,我们将确保质量差异化的产品竞争力并加强我们的产品阵容;建立稳定的电池采购流程并开发下一代高性能电池;并制定使我们能够迅速融入各种新技术的软件战略。
生物电界面连接各种长度尺度上的材料和生物系统,从亚细胞尺寸到组织和器官水平。近几十年来,界面的发展取得了显著增长。自 21 世纪初以来,该领域已从膜片钳、微电极阵列 (MEA) 和场效应晶体管 (FET) 发展到基于微创、超小型和生物相容性纳米材料的传感和调制技术 1–3 。到目前为止,研究一直在利用具有合理设备结构和高效制造方法的纳米级导电材料来开发神经科学、心血管疾病研究、微生物相关能源系统和许多其他不断扩展的领域的新应用 4–9 。半导体、碳、金属及其复合材料和氧化物是用于界面的材料,可催化深部脑刺激器、视网膜假体、植入式人工起搏器和微生物燃料电池的开发以及个性化医疗的探索取得重大进展 10–14 。这些发展增强了更好地理解细胞、组织和器官系统内和之间复杂的电生理生物过程的能力。
摘要:等离激元纳米剂是一种新型的超小型激光器,由于其光线和快速载体动力学特征的破坏衍射极限,因此获得了广泛的兴趣。通常,对于等离激子纳米剂需要解决的主要问题是光学和欧姆损失引起的高损失,这导致了低质量因子。在这项工作中,设计和制造了具有较大界面区域的Ingan/gan纳米板等离激元纳米剂,其中SPS和激子之间的重叠可以得到构成。激光阈值计算为〜6.36 kW/cm 2,其中最大最大宽度(FWHM)从27 nm下降到4 nm。和502 nm处的快速衰减时间(刺激激光的尖峰)估计为0.42 ns。增强的激光特性主要归因于低折射率材料中电磁波的强限制,这证明了SPS和激子之间的近场耦合。这种等离子激光器应在数据存储应用程序,生物应用,光通信中有用,特别是对于集成到芯片上系统中的光电设备。
摘要 — 设计并演示了在 100 微米薄玻璃基板上通过通孔互连的高精度高性能带通和低通滤波器的双面或 3-D 集成,用于超小型双工器组件。开发了一种实现大面积高精度制造的新型工艺,以大大提高电气性能的公差。高精度、高品质因数和高元件密度以及玻璃上的薄膜层用于在玻璃上实现创新的拓扑结构,以实现高带外抑制和低插入损耗。低损耗 100 毫米厚的玻璃芯和多层 15 毫米薄聚合物膜用于在基板上构建滤波器。演示的双工器尺寸为 2.3 3 2.8 3 .2 毫米。借助玻璃的尺寸稳定性和半加成图案化工艺控制,所制造的滤波器的性能与模拟结果具有极好的相关性。还分析了工艺敏感性分析对双工器性能的影响。最后,展示了一种独特而创新的工艺解决方案,以控制工艺偏差并实现良好的双工器公差。使用新工艺,性能偏差控制在约 3.5 倍。
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了
光动力疗法,射频诱导的高温等。)。11,它们的超小型尺寸降低至100 nm,并且它们的高表面反应性可以与生物学环境产生显着的相互作用,可以评估它们调节细胞行为的能力或诸如细胞差异和繁殖等细胞方面的能力。12,13上面列出的不同细胞机制的控制既可以改善用于生物医学应用的创新纳米复合材料的制造,又可以促进对治疗方案的改进策略的使用,以恢复因创伤性疾病,退化性疾病或衰变而损害的组织功能。14迄今为止,已经研究了基于聚合物,金属和陶瓷的几种NP。因此,大多数研究使用包括诱导多能干细胞(IPSC)在内的多种干细胞进行。15 - 18,例如,用柠檬酸盐,壳聚糖或bronectin官能化的Au-NP能够增强人间质干细胞(MSC)和脂肪衍生的干细胞(ADSC)的差异化,并进入心肌细胞和Oste-Obte-Ormasts。19,20 AG-NP可以促进人尿液衍生的干细胞(USC)和MSC的增殖,而基于石墨烯的NPS则增强了