大脑白质微结构的各向异性在各种MRI对比的方向依赖性中表现出来,如果忽略,可能会导致显着的量化偏差。了解这种取向依赖性的起源可以增强对发育,衰老和疾病中MRI信号变化的解释,并最终改善临床诊断。使用新型的实验设置,研究了辅助内和轴外水的限制,以依赖最临床研究的参数之一,显然是横向松弛𝑇2。特别是,可倾斜的接收线圈与超强梯度MRI扫描仪连接,以获取具有前所未有的采集参数范围的多维MRI数据。使用此设置,可以根据不同的动态差异的差异来分离室𝑇2,并且其方向依赖性通过将头部重新定位相对于主磁性field⃗𝐵0,进一步阐明了其方向依赖性。(隔室)𝑇2的依赖性在纤维方向W.R.T.⃗𝐵0,并使用特征表达式进行进一步量化,以实现敏感性和魔法角效应。在白质中,各向异性效应以轴外水信号为主,而轴内水信号衰减的差异较小,而纤毛方向则差。此外,结果表明,较强的轴外𝑇2取向依赖性由磁易感性效应(大概是髓鞘)主导,而较弱的轴内𝑇2方向依赖性可能由微观结构ecects的组合驱动。即使目前可倾斜线圈的设计仅具有适度的角度,结果也证明了倾斜的总体影响,并作为概念验证的证明,激励了进一步的硬件开发,以促进探索原性各向异性的实验。这些观察结果有可能导致对疾病的隔室敏感性提高的白质微观结构模型,并且可能会对纵向和小组𝑇2-和分支-MRI数据分析产生直接的后果,其中通常会忽略扫描仪中头部方向的影响。
大脑白质微结构的各向异性在各种MRI对比的方向依赖性中表现出来,如果忽略,可能会导致显着的量化偏差。了解这种取向依赖性的起源可以增强对发育,衰老和疾病中MRI信号变化的解释,并最终改善临床诊断。使用新型的实验设置,研究了辅助内和轴外水的限制,以依赖最临床研究的参数之一,显然是横向松弛𝑇2。特别是,可倾斜的接收线圈与超强梯度MRI扫描仪连接,以获取具有前所未有的采集参数范围的多维MRI数据。使用此设置,可以根据不同的动态差异的差异来分离室𝑇2,并且其方向依赖性通过将头部重新定位相对于主磁性field⃗𝐵0,进一步阐明了其方向依赖性。(隔室)𝑇2的依赖性在纤维方向W.R.T.⃗𝐵0,并使用特征表达式进行进一步量化,以实现敏感性和魔法角效应。在白质中,各向异性效应以轴外水信号为主,而轴内水信号衰减的差异较小,而纤毛方向则差。此外,结果表明,较强的轴外𝑇2取向依赖性由磁易感性效应(大概是髓鞘)主导,而较弱的轴内𝑇2方向依赖性可能由微观结构ecects的组合驱动。即使目前可倾斜线圈的设计仅具有适度的角度,结果也证明了倾斜的总体影响,并作为概念验证的证明,激励了进一步的硬件开发,以促进探索原性各向异性的实验。这些观察结果有可能导致对疾病的隔室敏感性提高的白质微观结构模型,并且可能会对纵向和小组𝑇2-和分支-MRI数据分析产生直接的后果,其中通常会忽略扫描仪中头部方向的影响。
关键词:异质集成、微电子、多芯片封装、氮化镓、共封装光学器件摘要 - 美国国防部 (DoD) 需要以可承受的价格获得先进的微电子器件,以提供应对竞争环境中不断演变的威胁所需的性能。这需要采用最先进 (SOTA) 材料、设备和架构的解决方案。多芯片封装 (MCP) 原型利用异质集成来结合最先进的商用数字和射频 (RF) 技术。国防部专用的芯片集成在有保证的组装、封装和测试设施中。对先进 RF 节点和外延材料的投资提供了对毫米波 (mmW) 频谱的卓越访问,而共封装光学器件 (CPO) 则提供了高效的高带宽数据传输。通过协调供应链投资,国防部寻求实现复合半导体和光子学的真正异质集成,以生产高性能收发器和实现国防系统频谱优势所需的其他子系统。引言 国防部研究与工程部副部长办公室 (OUSD(R&E)) 的可信和保证微电子 (T&AM) 计划正在投资美国微电子领域,为我们的经济和国家安全创造更广泛的竞争力。国家安全任务的技术优势取决于新技术的快速发展和转化为能力,速度更快、成本更低、性能更高、安全性更高。作为一项关键的支持技术,微电子技术对于实现几乎所有现代国防系统的创新产品都至关重要。未来的国防系统依赖于敏捷的战术能力,这些能力可以:整合所有领域和电磁频谱的信息,了解作战环境,做出决策,传播信息。微电子技术对于硬件至关重要,它为国防部提供了对抗对手的超强能力,并使美国在全球商业优势和竞争力中占据优势。尽管微电子技术发挥着关键作用,但在商业需求的推动下,制造和创新生态系统正越来越多地向海外转移。美国
这项研究得到了斯特拉斯堡大学医院(CE-2020 - 37)人类实验伦理标准委员会的批准,并符合1964年赫尔辛基宣布及其后续修正案。由于在199年大流行的背景下,导致急性呼吸道和神经系统表现的复兴,因此放弃了患者书面知情同意的要求。通过实时反向转移聚合酶链反应性脑咽拭子测试证实了最终的COVID-19诊断。回顾性包括112例神经系统症状3T MR成像的患者(年龄范围25至87岁;平均年龄为63.03岁;男性与女性比率为65%/35%)。纳入标准为以下:年龄18岁或年龄以上的阳性急性急性呼吸综合症2(SARS-COV-2)聚合酶链链反应拭子测试和神经型症状,导致Strasbourg医院的MR成像扫描。死亡率为5%。患者的意识受损(36例,50%),混乱(31例,43%),锥形症状(19例,26%),躁动(18例患者,25%),头痛(14例,19%),病理学醒来(病理学醒来(13%,13%,18%),Anosmia and Anosmia and Egeusia和Egeusia(5患者)(5患者,7%),4%,4%,4%,3%,4%,3%,3例(3例)。其中,重症监护病房有90%的住院。呼吸道症状发作后,最初的脑MR成像平均为30天(SD,15.92)。分类数据。定量数据。收集了临床,成像,生物学,治疗和进展数据,并在结果中详细介绍(在线补充数据)。P值低于.05被认为是重要的。大脑MR成像异常的分类如下:瘦肉增强,多焦点和限制的天赋白质超强度,弥漫性白质超强性,白质超牢房,白质微观出现,缺血性中风,局部性焦点,焦点增强,频率增强,伴随着淡淡的超注,并涉及杂物,并散发出杂物般的porter,并张贴了。综合征。
背景。中子星被超强电磁场有效加速的超相对论粒子所包围。这些粒子通过曲率、同步加速器和逆康普顿辐射大量发射高能光子。然而,到目前为止,还没有任何数值模拟能够处理这种极端情况,即非常高的洛伦兹因子和接近甚至超过量子临界极限 4.4 × 109T 的磁场强度。目的。本文旨在研究旋转磁偶极子中的粒子加速和辐射反应衰减,其实际场强为 105 T 至 1010 T,这是毫秒和年轻脉冲星以及磁星的典型场强。方法。为此,我们在简化的 Landau-Lifshitz 近似中实现了一个精确的分析粒子推动器,包括辐射反应,其中假设电磁场在一个时间步长积分期间在时间上恒定而在空间上均匀。使用速度 Verlet 方法执行位置更新。我们针对时间独立的背景电磁场(如交叉电场和磁场中的电漂移以及偶极子中的磁漂移和镜像运动)对我们的算法进行了广泛的测试。最后,我们将其应用于真实的中子星环境。结果。我们研究了粒子加速以及辐射反应对插入毫秒脉冲星、年轻脉冲星和磁星周围的电子、质子和铁核的影响,并与没有辐射反应的情况进行了比较。我们发现最大洛伦兹因子取决于粒子种类,但与中子星类型的影响很小。电子的能量高达 γ e ≈ 10 8 − 10 9 ,而质子的能量高达 γ p ≈ 10 5 − 10 6 ,铁的能量高达 γ ≈ 10 4 − 10 5 。虽然质子和铁不受辐射反应的影响,但电子的速度却急剧下降,使其最大洛伦兹因子降低了四个数量级。我们还发现,在几乎所有情况下,辐射反应极限轨迹都与简化的朗道-利夫希茨近似非常吻合。
[4] Ding, H., Liang, X., Xu, J., Tang, Z., Li, Z., Liang, R.* , & Sun, G.* (2021). 用于柔性传感器的超强拉伸、高强度和快速自恢复的水解水凝胶。ACS Applied Materials & Interfaces,13(19),22774-22784。[5] Tang, Z., Hu, X., Ding, H., Li, Z., Liang, R.* , & Sun, G.* (2021). 绒毛状聚(丙烯酸)基水凝胶吸附剂,具有快速高效的亚甲蓝去除能力。胶体与界面科学杂志,594,54-63。[6] Huo, P., Ding, H., Tang, Z., Liang, X., Xu, J., Wang, M., Liang, R.* , & Sun, G.* (2022)。具有高韧性和快速自恢复的半互穿网络导电丝素蛋白水凝胶,可用于应变传感器。国际生物大分子杂志。[7] 王梅、梁琳、刘倩、梁晓燕、郭红、李哲、梁荣* 和孙光杰 (2022)。磷酸氢二钾对磷酸镁钾水泥性能的影响。建筑与建筑材料,320,126283。[8] 郭红、唐哲、刘倩、徐建、王梅、梁荣* 和孙光杰 (2021)。超吸水绒毛状纳米复合水凝胶实现超稳定防冲刷水泥浆。建筑与建筑材料,301124035 [9] 刘倩、陆哲、胡晓、陈斌、李哲、梁荣*、孙光杰* (2021)。水泥基体原位聚合制备机械强度高的聚合物-水泥复合材料。建筑工程杂志,103048。 [10] 郭华、徐建、唐哲、刘倩、王明、梁荣*、孙光杰* (2022)。超吸水聚合物基防冲刷外加剂对海水混合水泥浆体性能的影响。材料与结构,55(2),1-14。 [11] 王明、刘倩、梁荣、徐建、李哲、梁荣*、孙光杰 (2022)。偏高岭土对高水固比磷酸镁钾水泥性能的影响。土木工程材料学报,34(9),04022227。
创建比常规方法效果更好的量子算法(例如大整数分解)使量子计算成为现代物理学的重点。在物理构建量子计算的各种方法中,Cirac 和 Zoller [ 1 ] 提出的离子阱方法尤为有前景。离子阱的有效性已通过大量实验得到证明,证实了其在实际量子计算中的潜力。离子阱是一种利用电场和/或磁场将带电粒子(离子)限制在特定空间区域的装置。这种限制允许对离子进行操纵和分析。事实上,精确控制单个离子的能力可以实现精确的量子操作,而捕获离子的长相干时间可确保复杂计算期间的稳定性 [ 2 ]。离子阱系统的可扩展性进一步使得构建更大的量子系统成为可能,高保真量子门可最大程度地减少操作错误。此外,离子阱有助于产生纠缠态,这对于量子通信和分布式计算至关重要。在这种情况下,离子阱中的势通常用谐振子来近似,这为分析离子的运动和相互作用提供了一个完善的框架,这对于实现量子门和其他必要的操作至关重要 [3]。阱内离子之间的相互作用(包括光学或电磁谐振器中的离子)可以建模为耦合的谐振子,这对于控制量子态和执行纠缠等量子操作至关重要。这些相互作用可以进入各种耦合状态——弱、强和超强——每一种耦合状态都在提高量子计算机的性能和可扩展性方面发挥着关键作用 [4,5]。在量子计算领域,特别是在囚禁离子系统的哈密顿动力学框架内,对各种量子度量的细致理解至关重要。例如,纠缠熵测量子系统之间的量子相关性,指示共享的信息量。这对于量子算法和协议(如纠错和加密)非常重要。另一个指标是计算复杂度,它评估量子计算所需的资源,包括量子比特的数量和量子电路的深度。这反映了量子操作的难度和算法的效率。高纠缠熵通常会导致计算复杂度增加,因为维持纠缠需要更复杂、更深的电路。另一方面,通过按顺序排列量子门,可以形成高效的量子算法,使量子计算机能够解决超出传统计算机能力的问题 1 。量子门与波函数相互作用的研究很重要;将参考状态 | ψ R ⟩ 转换为目标状态 | ψ T ⟩ 需要应用一个幺正变换 U ,这是通过一系列通用门实现的。优化这些门序列至关重要,因为通往同一目标状态的可能路径是无限的。电路深度,即连续操作的数量,与计算复杂度有关。
简介 本报告是对詹姆斯·M·英霍夫 2023 财年国防授权法案 (NDAA) 第 735 条(公法 117-263)的回应,该法案要求国防部长制定一项全面的脑健康计划。 国防部 (DoD) 始终对威胁作战人员战备、健康和表现的威胁保持警惕,以尽量减少对国防部行动和任务效力的潜在负面影响。国防部致力于保护作战人员的健康和福祉,以最大限度地提高保卫国家的能力。为了成功保卫国家,国防部将优化身体和认知表现,以增强和保持部队的战备状态。 脑健康工作已经取得了巨大的成就和许多成功,包括有关创伤性脑损伤 (TBI) 的活动,但这些工作缺乏整个部门的协调。国防部的高层领导认识到需要同步和优先考虑各项努力,形成一个统一的脑健康方法,以产生更有效和更高效的结果。因此,2018 年 10 月 1 日,国防部副部长指示制定一项全面的战略和行动计划,重点是促进作战人员的大脑健康 (WBH) 和对抗 TBI。1 WBH 被定义为影响作战人员在任何环境中适应性运作的能力的身体、心理和认知状态,并影响战备、作战能力、任务效力以及实现超强或卓越杀伤力的目标。2 2022 年 6 月 8 日,国防部发布了 WBH 倡议:战略和行动计划 3,这是作战和医疗界的共同努力。该战略和行动计划解决了大脑暴露问题,包括爆炸过压暴露、TBI 以及 TBI 的长期或晚期影响,目标是优化大脑健康和对抗 TBI。此外,作为国防部 WBH 倡议的一部分,国防部通过基于能力的评估确定了能力和要求,从而得出了大脑健康所需的解决方案 4,以确保联合作战人员能够成功执行任务。本报告概述了国防部当前的 WBH 计划:战略和行动计划或实施计划。此外,该报告还介绍了 WBH 计划的初步活动描述,该计划将于 2024 年 1 月 31 日开始每年报告。国防部作战人员脑健康计划:战略和行动计划国防部的 WBH 计划战略和行动计划或实施计划为 WBH 的端到端解决方案的深思熟虑、优先和快速开发创建了一个框架。该战略和行动计划涉及脑健康、脑暴露,包括武器和弹药的爆炸过压暴露、TBI、以及反复脑部暴露和/或 TBI 的长期或迟发影响。该战略和行动计划包括五大方面
1,2,3 助理教授,昌迪加尔药学院,兰德兰,莫哈里,旁遮普邦 140307,印度。摘要:该综述使用计算机科学、信息学、统计学和应用数学中的最新方法来解决重要的生物学问题,适当地总结了生物科学、化学科学及其计算机应用。序列比对、基因发现、人类基因组计划、蛋白质结构比对、蛋白质结构预测、基因表达预测、蛋白质-蛋白质相互作用和进化建模是该主题的一些主要研究项目。人类基因组计划确定了整个人类基因序列(大约 30 亿个碱基对),在其研究中广泛使用了生物信息学。它对该领域的主要贡献是对疾病的理解和新有效药物的开发。生物信息学、计算生物学和生物信息学基础设施这三个术语涵盖了几乎相同的内容。使用计算机来学习分子结构和相互作用被称为计算化学、遗传学和计算医学。过去几十年来,由于计算机和软件的惊人进步,这一领域得到了扩展,计算机效率得到提高,并且人们能够计算分子特性,以用于各种与化学相关的应用。 关键词:计算化学、计算生物学、计算技术的应用。 1. 简介 药物遗传化学或计算药物化学:该科学应用领域的目标是通过融合药理学和化学,或者更确切地说是整合遗传学、化学和药理学,来创造和开发新型治疗分子。在药物化学中,人们会识别、合成和开发新型化合物,以优化其药效同时最大限度地减少其副作用。为了研究所使用的药物及其生物学效应,人们采用了许多化学和技术技术,以及新颖的计算机化学应用 [1]。结构-效应关系 (SAR) 和数量结构-效应关系 (QSAR) 是这些方法中最重要的两种。用作药物的大多数化合物都是有机化合物,可进一步分为生物物质(如胰岛素和英夫利昔单抗)和微小有机分子(如阿托伐他汀和氯吡格雷)[2, 3]。药物化学专门涉及微小有机分子、生物化学、酶学和某些天然产物领域的药物发现和开发。超级计算机或超级计算机是一种具有超强功能的计算机,可以处理和存储大量数据、信息和程序。1929 年,
美国陆军合同司令部 里斯本·威廉姆斯上校 美国陆军合同司令部-奥兰多主任 里斯本·威廉姆斯上校于 2024 年 7 月 31 日起担任美国陆军合同司令部-奥兰多主任,该司令部是美国陆军合同司令部和美国陆军物资司令部的一个主要下属司令部。威廉姆斯上校作为主任,负责奥兰多 ACC 的领导和运营,ACC-Orlando 由 170 多名合同专业人员组成,他们执行价值数十亿美元的项目组合,为陆军的训练支持系统组合提供支持。ACC-Orlando 提供量身定制的合同解决方案和业务建议,以支持多样化的客户群,包括模拟、训练和仪器项目执行办公室 (PEO STRI)、陆军未来司令部、航空项目执行办公室、国民警卫队局和安全援助培训管理办公室。威廉姆斯上校出生于南卡罗来纳州哥伦比亚,2002 年 5 月 11 日通过汉普顿大学预备役军官训练团被任命为步兵分队/副官长。2002 年 8 月 16 日,他开始服现役,担任 Goldbar 招聘员,等待执行他的第一项任务。他担任过各种职务,从步枪排长到任务和设施承包司令部 (MICC-Ft. Polk) 指挥官/主任。威廉姆斯上校的第一项任务是担任第 1 营、第 325 空降步兵团、第 82 空降师的步枪排长。在担任步枪排长后,威廉姆斯上校转入副官长团 (AG),并担任第 2 旅战斗 (BCT) 总部的助理旅副官。完成该任务后,威廉姆斯上校被分配到第 7 特种部队组(空降)第 3 营,担任营副官。在担任营副官 36 个月后,威廉姆斯上校被分配到迈阿密军事入口处理站 (MEPS) 担任执行官 (XO) 一年,之后转入采购部队。在迈阿密 MEPS 任职后,威廉姆斯上校随后被分配到第 410 合同支援旅 (CSB) - 迈阿密分部,在那里他担任了约 31 个月的第 678 应急合同小组 (CCT) 的团队负责人。威廉姆斯上校随后被分配到巴尔的摩国防合同管理局 (DCMA),在那里他担任了 40 个月的 ACAT-IA 战术无人机系统 (TUAS) 项目的行政合同官 (ACO)。威廉姆斯上校随后担任了 15 个月的英国国际技术中心主任,该中心隶属于位于伦敦白厅的英国国防部,是作战能力发展司令部(前身为美国陆军研究、发展与工程司令部 - 大西洋司令部)的一部分。他曾担任欧洲、非洲和西南亚 10 个国家的陆军首席科学技术/采购代表,负责识别、评估和传播新兴技术和创新研究,为作战人员提供当前和未来的超强能力。2020 年 6 月至 2023 年 6 月,威廉姆斯上校担任 MICC-Ft. Polk 的指挥官/主任,负责为 Ft. Polk 设施、其租户单位/活动和联合战备训练中心 (JRTC) 提供合同支持。
