软X射线断层扫描(SXT)可以实现完全水合,低温保存的生物样品的三维(3D)成像,揭示了超微结构的细节,而无需染色,嵌入或切片。传统上仅在同步基因设施上可用,激光驱动的等离子源的最新进展导致了紧凑的软X射线显微镜(例如SXT-100)的发展。SXT-100将成像分辨率降低到54 nm全螺距,在30分钟到两个小时内获得了断层图。SXT-100与落叶显微镜整合在一起,通过桥接荧光和电子显微镜来促进相关工作流,同时保留玻璃化样品的结构完整性。我们通过各种用例演示了SXT-100的功能,包括成像Euglena Gracilis,酿酒酵母酵母细胞和哺乳动物细胞中的纳米颗粒。相对较短的断层图采集时间,软X射线断层扫描的几乎没有破坏性的性质以及其定量成像功能强调了其作为高级生物成像的强大工具的潜力。未来的发展有望增强吞吐量和更深入的整合,并与新兴的相关成像方式以及包括组织在内的各种样本类型。
摘要:自然界中的鲜艳色彩源于光的干扰与周期性的纳米结构,从而产生结构色。尽管这种生物光子结构长期以来一直引起人们对昆虫和植物的兴趣,但在其他生物体中,它们鲜为人知。在聚集单细胞生物的Amoebozoa王国中,在菌丝菌(Myxomycetes)中观察到结构颜色,这是一种进化的变形虫,形成了宏观的真菌样结构。以前的工作将二茶叶藻的闪闪发光与薄膜干扰有关。使用光学和超微结构表征,我们在这里研究了22种的结构颜色的发生,这些物种代表了两个主要进化进化枝,包括14个属。所有研究的物种均显示薄膜的干扰,在壁膜上产生颜色,其色调分布在整个可见范围内,这些色素通过色素吸收而改变。在Metatrichia vesparium的化合物peridium中观察到密集填充钙的壳的白色反射层,其形成和功能仍然未知。这些结果提出了有关粘液菌中薄膜结构颜色的生物学相关性的有趣问题,这表明它们可能是其生殖周期的副产品。
编辑:Szczepan BILIŃSKI(发育生物学、胚胎学、细胞骨架、细胞间连接 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jerzy KAWIAK(免疫学、细胞计数、血液学、癌症生物学 - CMKP 临床细胞学系,01-813 华沙,ul. Marymoncka 99)、Wincenty KILARSKI(肌肉、肌肉收缩、细胞运动 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jacek KUŹNICKI(分子生物学、生物化学 - 波兰科学院实验生物学研究所,02-097 华沙,ul. Pasteura 3)。 Jan MICHEJDA(信息通路、细胞膜、细胞能量学 - 亚当密茨凯维奇大学生物能量学系,61-701 波兹南,ul. Fredry 10),Maria OLSZEWSKA(植物细胞、植物和动物细胞中的遗传信息 - 罗兹大学生理学和细胞学研究所植物细胞学和细胞化学系,90-237 罗兹,ul. Banacha 12/16),Maciej ZABEL(普通组织学、内分泌学、组织化学(免疫细胞化学、杂交细胞化学)、细胞超微结构 - 罗兹医科大学组织学系,50-368 弗罗茨瓦夫,ul. Chałubińskiego 6a)
编辑:Szczepan BILIŃSKI(发育生物学、胚胎学、细胞骨架、细胞间连接 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jerzy KAWIAK(免疫学、细胞计数、血液学、癌症生物学 - CMKP 临床细胞学系,01-813 华沙,ul. Marymoncka 99)、Wincenty KILARSKI(肌肉、肌肉收缩、细胞运动 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jacek KUŹNICKI(分子生物学、生物化学 - 波兰科学院实验生物学研究所,02-097 华沙,ul. Pasteura 3)。 Jan MICHEJDA(信息通路、细胞膜、细胞能量学 - 亚当密茨凯维奇大学生物能量学系,61-701 波兹南,ul. Fredry 10),Maria OLSZEWSKA(植物细胞、植物和动物细胞中的遗传信息 - 罗兹大学生理学和细胞学研究所植物细胞学和细胞化学系,90-237 罗兹,ul. Banacha 12/16),Maciej ZABEL(普通组织学、内分泌学、组织化学(免疫细胞化学、杂交细胞化学)、细胞超微结构 - 罗兹医科大学组织学系,50-368 弗罗茨瓦夫,ul. Chałubińskiego 6a)
心脏毒性是癌症治疗过程中心脏收缩功能的降低。心血管疾病(CVD)是化学疗法毒性最常见的表现之一,这可能是由于癌症化学疗法对心脏功能和结构的直接影响所致,尤其是如果患者已经患有心血管危险因素[5,6]。蒽环类药物和靶向药物曲妥珠单抗经常用于治疗乳腺癌。蒽环类动物在许多有效的化学疗法方案的组成部分中起作用,用于新辅助,辅助和姑息治疗。与与癌症无关的对照组相比,对乳腺癌存活的患者的研究证实了患心血管疾病的风险增加。在乳腺癌后的患者中,患心血管疾病的风险大约高出约2.4倍。这些数据表明需要控制心血管疾病的危险因素,并制定策略以降低发生时与心血管疾病相关的死亡风险[7]。使用蒽环类药物和蒽环类 - trastuzumab的现代化学疗法的心脏毒性频率通常小于5%。蒽环类动物会导致心肌细胞具有特征性的超微结构变化,包括液泡变性和肌原纤维丧失[10,11]。
编辑:Szczepan BILIŃSKI(发育生物学、胚胎学、细胞骨架、细胞间连接 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jerzy KAWIAK(免疫学、细胞计数、血液学、癌症生物学 - CMKP 临床细胞学系,01-813 华沙,ul. Marymoncka 99)、Wincenty KILARSKI(肌肉、肌肉收缩、细胞运动 - 雅盖隆大学动物学研究所,30-060 克拉科夫,ul. Ingardena 6)、Jacek KUŹNICKI(分子生物学、生物化学 - 波兰科学院实验生物学研究所,02-097 华沙,ul. Pasteura 3)。 Jan MICHEJDA(信息通路、细胞膜、细胞能量学 - 亚当密茨凯维奇大学生物能量学系,61-701 波兹南,ul. Fredry 10),Maria OLSZEWSKA(植物细胞、植物和动物细胞中的遗传信息 - 罗兹大学生理学和细胞学研究所植物细胞学和细胞化学系,90-237 罗兹,ul. Banacha 12/16),Maciej ZABEL(普通组织学、内分泌学、组织化学(免疫细胞化学、杂交细胞化学)、细胞超微结构 - 罗兹医科大学组织学系,50-368 弗罗茨瓦夫,ul. Chałubińskiego 6a)
摘要简介:伤口愈合涉及生长因子和细胞因子的相互作用,以恢复组织完整性。褪黑激素和MSC衍生的外泌体具有抗炎作用,增强重新上皮化,血管生成并调节胶原蛋白重塑。作品的目的:将28只男性白化大鼠平均分为4组:I组(对照)未能。其他组,创建了全厚性皮肤圆形伤口。第二组,伤口未经治疗。 第三组(褪黑激素治疗),褪黑激素溶解在盐水中,每天以5 mg/kg的剂量注释14天。 IV组(外泌体治疗),外泌体在200μlPBS中以200μgMSC-诊断的剂量下皮下注射四个部位,在伤口周围的四个部位处注射。 14天后,通过组织学检查皮肤切片(通过光和电子显微镜)。 。 结果:I组的组织学和超微结构检查与正常皮肤组织学结构相似。 II组的H&E染色切片表明伤口部位的皮肤外层造成破坏,以及炎症细胞的显着存在和新的血管形成。 此外,Masson染色的部分揭示了皮肤深层层的薄胶原纤维。 II组皮肤切片的电子显微镜分析揭示了不存在Hemidesmosomal连接,以及对基底膜的破坏以及脱骨小体介导的细胞间连接损失。 结论:褪黑激素和MSC衍生的外泌体对皮肤伤口愈合具有改善作用。第二组,伤口未经治疗。第三组(褪黑激素治疗),褪黑激素溶解在盐水中,每天以5 mg/kg的剂量注释14天。IV组(外泌体治疗),外泌体在200μlPBS中以200μgMSC-诊断的剂量下皮下注射四个部位,在伤口周围的四个部位处注射。14天后,通过组织学检查皮肤切片(通过光和电子显微镜)。。结果:I组的组织学和超微结构检查与正常皮肤组织学结构相似。II组的H&E染色切片表明伤口部位的皮肤外层造成破坏,以及炎症细胞的显着存在和新的血管形成。此外,Masson染色的部分揭示了皮肤深层层的薄胶原纤维。II组皮肤切片的电子显微镜分析揭示了不存在Hemidesmosomal连接,以及对基底膜的破坏以及脱骨小体介导的细胞间连接损失。结论:褪黑激素和MSC衍生的外泌体对皮肤伤口愈合具有改善作用。褪黑激素和MSC衍生的外泌体成功地恢复了伤口部位正常的皮肤组织学结构,而接受的外泌体治疗组有了更大的改善。
由其超微结构Daniel Scholl 1,Tumara Boyd 1,Andrew P. Latham,2,3,4,Alexandra Salazar 1,Asma Khan 1,5 Steven Boeynaems 6,7,8,9,10,Alex S. Holehouse 11,12 Keren Lasker 1*隶属关系:1综合结构与计算生物学系,Scripps研究所,加利福尼亚州拉霍拉,92037,美国2定量生物科学研究所,加利福尼亚大学,旧金山大学,旧金山,旧金山,旧金山,CA 94158,美国。3加利福尼亚大学旧金山,旧金山,加利福尼亚州94158的加利福尼亚大学生物工程和治疗科学系。4加州大学旧金山分校,旧金山,旧金山,CA 94158,美国5美国德克萨斯州休斯敦市,德克萨斯州儿童医院,美国87030,美国8治疗创新中心(THINC),贝勒医学院,美国德克萨斯州休斯敦市贝勒医学院,美国977030,美国9阿尔茨海默氏症和神经退行性疾病中心和神经退行性疾病(CARD),德克萨斯州儿童医院,德克萨斯州休斯顿,美国107030年,美国10 Dan Luncn cancer cancer intimes美国117030,美国11日,美国11个生物化学和分子生物物理系,华盛顿大学医学院,圣路易斯,密苏里州圣路易斯,12个生物分子冷凝物中心(CBC),华盛顿大学,圣路易斯,圣路易斯,密苏里州圣路易斯 *通信 *通讯:dopark@scripps.edu
引言,范围和遗传学的简短历史,孟德尔的继承;隔离和独立分类的定律,背部十字架,测试交叉;优势和不完整的主导地位;性别链接的继承,果蝇和人的性别联系(色盲),XO,XY,WZ机制,性限制和性别联系角色,性别确定。链接和交叉;重组; DNA复制;基因的性质,遗传密码;转录,翻译;调节基因表达(例如lac操纵子);细菌中遗传物质的传播;共轭和基因重组中的共同转化和转化;基因工程原理。进化的过程和概念。实践:细胞生物学1。使用化合物显微镜2.从电子微观仪3. 中阐明细胞的超微结构 测量细胞尺寸4。 通过涂片/南瓜法和制备的幻灯片5。研究有丝分裂和减数分裂的研究。从电子微观仪3.测量细胞尺寸4。通过涂片/南瓜法和制备的幻灯片5。染色体形态的研究6。研究染色体数字7的变化。碳水化合物的提取和估计8。提取和估计蛋白质9。从植物材料中提取和RNA和DNA的估计。遗传学:1。与遗传物质的传播和分布有关的遗传问题2。鉴定植物材料中的DNA(胭脂红/奥尔凯蛋白染色)3。 div>研究果蝇的唾液腺染色体。教学策略
Long-Sheng博士是爱荷华大学医学院的心血管研究教授和伊迪丝·金·皮尔森(Edith King Pearson)主席。他是ISHR当选的家伙。Song博士是心脏激发控制(E-C)耦合的领先专家,在高影响力期刊上撰写了120多个同行评审的出版物。他的开拓性研究已大大提高了对健康和疾病中心脏E-C耦合的理解。值得注意的是,他的工作揭示了T管的超微结构重塑如何有助于E-C耦合功能障碍和心力衰竭(PNAS,2006年),以及这些变化如何与Connctophilin-2的失调相关联,这是E-C Coupling中关键结构蛋白的功能障碍,E-C COUPLING中的关键结构蛋白(Circ Res,2010; PNAS; PNAS; PNAS; PNAS; PNAS; PNAS; PNAS》; cileculation; cileculation; cileculation; ciles; cilecl; cilecl; cilecl; cilecl; cilecl还是致。在其具有里程碑意义的2018年科学论文中,Song博士证明了Calpain裂开的noctophilin-2的N末端片段充当压力自适应的转录调节剂,可防止压力心脏中的转录重编程和病理重塑。这一发现为心力衰竭的精密医学和有针对性的治疗策略开辟了新的途径(Circ Res,2022; Circulation,2024)。