●什么是生活?生物多样性;需要分类;生命的三个领域;分类学和系统学;物种和分类层次结构的概念;二项式术语;研究分类法的工具 - 博物馆,动物园,草药,植物园。●五个王国分类:Monera的显着特征和分类; protista和真菌分为主要群体;地衣;病毒和病毒,将植物的显着特征和分类为主要群体,苔藓植物,孢子菌,裸子植物和被子植物;被子植物 - 分类为类,特征特征和示例,显着特征和动物 - 非对抗的分类,直至门水平,然后缔结级别。●动物和植物中的结构组织:形态和修饰;组织;解剖学和流动植物的不同部分的功能:根,茎,叶,渗透性 - cymose和camose和comemose,豆类,水果和种子,动物组织;昆虫(蟑螂)的不同系统(消化,循环,呼吸,神经和生殖)的形态,解剖学和功能。●细胞结构和功能:细胞理论和细胞作为生命的基本单位;原核和真核细胞的结构;植物细胞和动物细胞;细胞包膜,细胞膜,细胞壁;细胞细胞器结构和功能;内膜系统 - 肾上腺素网,高尔基体,溶酶体,液泡;线粒体,核糖体,质体,微生物;细胞骨架,纤毛,叶叶菌,中心元素(超微结构和功能);核核膜,染色质,核仁。●细胞分裂:细胞周期,有丝分裂,减数分裂及其意义。活细胞的化学成分:蛋白质,碳水化合物,脂质,核酸的生物分子结构和功能;酶类型,性质,酶作用。
无机磷酸盐(P I)是生命的必需分子之一。然而,对动物组织中的细胞内P I代谢和信号传导知之甚少。在观察到慢性P I饥饿会导致果蝇的消化性上皮中引起过度增殖,我们确定P I饥饿会触发P I Transporter PXO的下调。与P I饥饿一致,PXO缺乏引起中肠过增高。有趣的是,免疫染色和超微结构分析表明,PXO特异性标记了非典型的多层细胞器(PXO主体)。此外,通过使用Förster共振能量转移(FRET)P I传感器2进行P i成像,我们发现PXO限制了胞质P I水平。PXO身体需要PXO进行生物发生,并在P I饥饿后发生降解。PXO体的蛋白质组学和脂质组表征揭示了其独特的特征,作为细胞内P I储备。因此,P I饥饿会触发PXO下调和PXO体降解,作为增加胞质P I的补偿机制。最后,我们将激酶的连接器与AP-1(CKA)(CKA)(CKA)和JNK信号3的一个组件(CKA)确定为PXO敲低或P I饥饿诱导的高增殖的介体。总的来说,我们的研究将PXO体作为胞质P I水平的关键调节剂,并鉴定出P i依赖性的PXO – CKA – JNK信号传导控制组织稳态。
近来,生物组织电子显微镜的成像吞吐量空前提高,使对整个大脑等大型组织块的超微结构分析成为可能。然而,对大型生物样本进行均匀、高质量的电子显微镜染色仍然是一项重大挑战。到目前为止,评估电子显微镜的染色质量需要对样本进行端到端的整个染色方案,对于大型样本来说,这可能需要数周甚至数月的时间,这使得此类样本的方案优化效率低下。在这里,我们提出了一种原位延时 X 射线辅助染色程序,它打开了电子显微镜染色的“黑匣子”,可以实时观察单个染色步骤。使用这种新方法,我们测量了浸入不同染色溶液中的大型组织样本中重金属的积累。我们表明,固定组织中测得的锇积累量在经验上服从孵育时间和样本大小之间的二次依赖关系。我们发现,亚铁氰化钾(四氧化锇的经典还原剂)在锇染色后可使组织变得透明,并且组织在四氧化锇溶液中会膨胀,但在还原锇溶液中会收缩。X 射线辅助染色让我们能够了解原位染色动力学,并使我们能够开发出一种扩散-反应-平流模型,该模型可以准确模拟组织中锇的测量积累。这些是朝着计算机染色实验和模拟引导优化大样本染色方案迈出的第一步。因此,X 射线辅助染色将成为开发可靠染色程序的有用工具,用于大样本(例如小鼠、猴子或人类的整个大脑)。
摘要 越来越多的证据强调了肠道屏障及其与饮食和肠道微生物群的复杂网络在炎症性肠病 (IBD) 和结肠炎相关结直肠癌 (CRC) 发病机制中的关键作用。此外,肠道屏障与肝脏和大脑的双向关联,称为肠脑轴,在并发症的发生中起着至关重要的作用,包括 IBD 的肠外表现和 CRC 转移。因此,屏障修复是这些炎症依赖性疾病的关键治疗目标,屏障评估可预测疾病结果、对治疗的反应和肠外表现。新的先进技术正在彻底改变我们对屏障范式的理解,使我们能够准确评估肠道屏障并有助于解开肠脑轴的复杂性。尖端内窥镜成像技术,例如超高倍率内吞镜和基于探针的共聚焦激光内窥镜,是允许实时探索“细胞”肠道屏障的新技术。此外,新型先进空间成像技术平台,包括多光谱成像、上转换纳米粒子、数字空间分析、光谱和质谱流式细胞术,能够对“分子”和“超微结构”屏障进行深入而全面的评估。在这个充满希望的领域,人工智能在标准化和集成这些新工具方面发挥着关键作用,从而有助于屏障评估和结果预测。展望未来,这种综合全面的方法有望发现新的治疗靶点,打破 IBD 的治疗上限。新型分子、饮食干预和微生物组调节策略旨在恢复、强化或调节肠脑轴。这些进步有可能为管理 IBD 提供变革性和个性化的方法。
原理:胶质母细胞瘤(GBM)是最致命的脑癌形式,其治疗代表了持续的挑战。间充质基质细胞(MSC)由于其肿瘤的能力而被探索为癌症管理中的治疗工具。但是,由于MSC在致癌作用中的有争议的作用,它们的临床应用受到限制。本研究研究了MSC如何影响肿瘤行为,并探索与褪黑激素(MEL)结合使用的协同抗癌作用。方法:使用原位和皮下GBM异种移植小鼠模型来评估MEL预处理的MSC(MSC MEL)的抗肿瘤效应。进行了组织学,免疫组织化学和超微结构分析,以鉴定肿瘤的表型变化。通过一组体外测定,包括直接和间接共培养,动态单细胞跟踪和肿瘤测定法,我们探讨了MSC MEL对原始和非主要GBM细胞的影响。转录组分析用于鉴定通过这种协同疗法调节的基因和途径。结果:MSC MEL在小鼠中延迟肿瘤生长并增加胶原蛋白沉积。与未经治疗的MSC相比,MSC MEL显示出预防GBM细胞迁移的能力增强。分子分析确定了与细胞迁移,细胞骨架动力学和暴露于MSC MEL的GBM细胞中的基因和蛋白质有关的基因和蛋白质,包括降低波形蛋白表达。最后,确定了与GBM患者的临床结局相关的遗传特征。结论:我们的研究表明,褪黑激素增强了MSC的抗癌特性,为它们与GBM细胞和肿瘤环境的相互作用提供了新的见解。这些发现为在临床实践中推进基于MSC的疗法提供了宝贵的指导。
鱼,包括27,000多种,代表了最古老的脊椎动物群,并具有先天和适应性免疫系统。大多数野生鱼类对寄生虫感染和相关疾病的敏感性是良好的。在所有脊椎动物中,消化道创造了一个非常有利且营养丰富的环境,进而使其容易受到微寄生虫和大型岩石岩的影响。因此,后生寄生虫成为重要的疾病药物,影响了野生和耕种,并导致了大量的经济损失。鉴于它们作为致病生物的地位,这些寄生虫值得关注。helminths是一个涵盖蠕虫的一般术语,构成了鱼类中最重要的后生寄生虫组之一。该组包括各种铂金(Digeneans,cestodes),线虫和阿甘特氏菌(Acanthocephalans)。此外,在水存在的无脊椎动物和脊椎动物宿主中发现了粘菌素,微观的后生动物内植物。值得注意的是,在纤维的消化道和某些内脏器官(例如肝脏,脾脏和性腺)中的几个先天免疫细胞在对寄生虫的免疫反应中起积极作用。这些免疫细胞包括巨噬细胞,嗜中性粒细胞,Rodlet细胞和肥大细胞,也称为嗜酸性粒细胞。在肠道感染部位,蠕虫通常会影响粘液细胞的数量并改变粘液组成。本文概述了消化道中先天免疫细胞和不同寄生虫系统中先天免疫细胞的发生和特征的概述。尤其是来自采用免疫组织化学,组织病理学和超微结构分析的研究提供的数据,提供了证据,提供了支持定位植物先天免疫细胞参与的互动症调节对中唑和原生动物寄生虫感染的炎症反应的证据。
旨在研究心脏病分子碱基和致病机制的研究中的主要局限性是能够再现人类疾病特征的细胞模型的有限可用性。迄今为止,跨越大小动物模型的心脏疾病的几种体内模型(Patten and Hallporter,2009; Tsang et al。,2016),但纤维素研究的大部分基于原发性培养和细胞系(Savoji等,2019)。所有这些模型肯定都是有用的,但是每个模型都有局限性,这可能导致纤维素模型中的可翻译性有限。的确,来自成年动物的主要培养物的两个局限性是它们一旦镀的短生存力,并且依赖于操作员的质量。另一方面,从新生动物(尤其是大鼠和小鼠)获得的细胞系或原发性培养物的主要缺点可能是它们缺乏超微结构和未成熟代谢。发现人类诱导的多能干细胞(HIPSC)的发现有望在菜肴中对许多不同的人类疾病进行建模并研究潜在的细胞病理生物学,甚至建立用于药物发现/毒性的体外测定法。鉴于心血管疾病(CVD)是全球最大的杀手,因此获得了获得HIPSC衍生心肌细胞(HIPSC-CMS)方案的优化,已受到了很多关注和资金。然而,心脏是一个复杂的器官,包括越来越多的细胞类型以及维持去极化和同步收缩的有效传播所需的独特空间结构。”总体而言,事实证明,小鼠模型的翻译价值(Nerbonne,2004年),最近的组织工程改进可以帮助克服与HIPSC在心血管研究中使用有关的当前局限性。当前从HIPSC获得心脏模型的主要策略如图1所示。在此角度,我们通过这些模型解决了当前局限
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
67 Cocid:用于肝炎感染的紧凑型细胞成像装置克里斯托弗·埃文斯(Christopher Evans)1,肯尼斯·法希(Kenneth Fahy)2,Sergey Kapishnikov博士2,3博士,Tiina O'Neill 4,Dimitri Scholz 4,Ass。尼古拉·弗莱彻教授1,4 1兽医科学,爱尔兰大学都柏林大学学院,爱尔兰2号,爱尔兰,生物学与环境科学学院,三个生物学与环境科学学院,都柏林大学,爱尔兰4康威研究所,爱尔兰大学,都柏林,爱尔兰大学,爱尔兰大学135个人类的二级进程。 ,Laura Cortez Rayas 2,Jens von Einem 2,Clarissa Read博士(Villinger)1 1电子显微镜的中央设施,德国ULM University,ULM University,Dermany,Dermany,2个病毒学研究所,ULM大学医学中心,ULM,德国492使用200 Hz Rocs Micracpopy forber forber forber forber forber profre forby roh roh roh hur fore fore forber profr。德国弗雷堡大学的生物和纳米光子学505人类巨细胞病毒Tegument蛋白UL71的超微结构研究及其在二次封闭中的作用BenediktKüß1,Annika Metzner 2,M.Sc. Annika Metzner 2,硕士。 Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。 Christine Kranz博士3,Clarissa博士读1,2,APL。尼古拉·弗莱彻教授1,4 1兽医科学,爱尔兰大学都柏林大学学院,爱尔兰2号,爱尔兰,生物学与环境科学学院,三个生物学与环境科学学院,都柏林大学,爱尔兰4康威研究所,爱尔兰大学,都柏林,爱尔兰大学,爱尔兰大学135个人类的二级进程。 ,Laura Cortez Rayas 2,Jens von Einem 2,Clarissa Read博士(Villinger)1 1电子显微镜的中央设施,德国ULM University,ULM University,Dermany,Dermany,2个病毒学研究所,ULM大学医学中心,ULM,德国492使用200 Hz Rocs Micracpopy forber forber forber forber forber profre forby roh roh roh hur fore fore forber profr。德国弗雷堡大学的生物和纳米光子学505人类巨细胞病毒Tegument蛋白UL71的超微结构研究及其在二次封闭中的作用BenediktKüß1,Annika Metzner 2,M.Sc. Annika Metzner 2,硕士。Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。 Christine Kranz博士3,Clarissa博士读1,2,APL。Laura Cortez Rayas 2,Paul Walther博士1,Gregor Neusser博士3,APL。Christine Kranz博士3,Clarissa博士读1,2,APL。Christine Kranz博士3,Clarissa博士读1,2,APL。Prof. Dr. Jens von Einem 2 1 Central Facility for Electron Microscopy, Ulm University, Ulm, Germany, 2 Institute of Virology, Ulm University Medical Center, Ulm, Germany, 3 Institute of Analytical and Bioanalytical Chemistry, Ulm University, Ulm, Germany 511 Advanced imaging reveals new lipid droplets dynamics in the malaria parasite Plasmodium falciparum Jiwon Lee 1,2,Kai Matuschewski教授3,Giel Van Dooren 2,Alexander G. Maier 2,Assoc。Prof. Melanie Rug 1 1 Centre for Advanced Microscopy, The Australian National University, Canberra, Australia, 2 Research School of Biology, The Australian National University, Canberra, Australia, 3 Molecular Parasitology, Humboldt University, Berlin, Germany 544 Correlative cryo-bioimaging to study coronavirus replication organelles Mr Patrick Phillips 1,2,3 , Prof Philippa Hawes 4 , Prof Maria Harkiolaki 2,Dan Clare博士2,Jonathan Grimes 3,Helena Maier博士1 1 The Pirbright Institute,Woking,英国Woking,英国2钻石光源,迪德科特,英国,牛津大学,牛津大学,牛津大学,牛津大学,英国,4,弗朗西斯·克里克学院,伦敦,英国弗朗西斯·克里克研究所,
两名研究员/设施负责人职位空缺 美国卫生与公众服务部 (DHHS) 国立卫生研究院 (NIH) 国家药物滥用研究所 (NIDA) 正在招聘两名研究员/设施负责人,负责内部研究项目 (IRP)。选定的候选人将获得 NIDA IRP 提供的资源以开展持续的项目运营,并负责管理这些核心内的预算、人员、设备和空间。NIDA IRP 将提供足够的实验室和办公空间来推进核心的发展。这些设施支持 NIDA IRP 内的研究,NIDA IRP 位于马里兰州巴尔的摩市约翰霍普金斯湾景医疗中心园区内的生物医学研究中心内。更广泛的 NIH 园区和巴尔的摩的 NIDA IRP 提供了丰富且高度互动的转化神经科学环境。包括全额联邦福利。工资将与经验相称。被任命者可以是美国公民、常住外国人或持有或有资格获得有效工作许可签证的非常住外国人。申请人必须提交一份个人简历(包括参考书目)、一份两页(单倍行距)的研究兴趣摘要和三个科学参考资料的联系信息,以及一份公平、多样性和包容性声明(不超过 2 页,单倍行距),描述指导、教学或其他经验、成功和挑战,与不同群体的女性、种族/少数民族个人以及生物医学研究中代表性不足的其他群体合作。共聚焦和电子显微镜 (CEM) 核心的职员科学家/设施负责人设施负责人将直接管理 CEM,CEM 专注于药物成瘾的基本大脑机制,使用共聚焦和电子显微镜技术和其他新兴显微镜技术来表征细胞器、组织培养和脑组织的细胞和超微结构特性。成功的候选人必须致力于科学卓越和高度协作的研究。申请人必须拥有神经科学、分子生物学或相关领域的医学博士或哲学博士或同等学位。具体的选拔标准包括免疫透射显微镜方面的经验,包括使用脑组织和组织培养进行包埋前和包埋后免疫标记、通过免疫标记和负染色对分离的囊泡进行超微结构分析、使用脑组织进行神经元 3D 重建的连续块面扫描 EM、使用脑组织进行体积扫描 EM 和电子断层扫描、免疫荧光、共聚焦显微镜、使用脑组织和组织培养的超分辨率显微镜、相关光和 EM 神经元成像用于使用免疫标记对轴突末端进行 3D 重建,以及使用 Imaris、Amira 和 Dragonfly 软件进行图像数据分析以使用共聚焦和/或 EM 图像进行 3D 重建。具有统计学经验者优先,具有核心设施管理经验者优先。成功候选人将有望与 NIDA IRP 内的其他研究小组合作,并为旨在了解药物成瘾机制的研究提供最先进的显微镜支持。因此,具有建立和维持合作工作能力的证明是非常可取的。遗传工程和病毒载体核心 (GEVVC) 的科学家/设施负责人设施负责人将负责管理 GEVVC,该设施专注于开发能够调节和监测神经系统中的分子、细胞和电路的遗传工具,并为 NIDA IRP 提供一般分子生物学支持。成功候选人必须致力于科学卓越和高度协作的研究。申请人必须拥有医学博士或哲学博士或同等学位。选择标准包括以下一项或多项经验:CRISPR 基因编辑、RNA 沉默工具、光遗传学/化学遗传学/遗传编码生物传感器、转录组学和转基因动物生成。成功候选人将有望与 NIDA-IRP 内的其他研究小组合作,并提供最先进的遗传和分子生物学工具来支持旨在了解药物成瘾机制的研究。因此,建立和维持合作工作的能力是十分必要的。