免责声明:1-本文给出的信息,包括规格和维度,可能会更改,而无需事先通知以改善产品特征。在订购之前,建议购买者与SMC-最新版本的数据表销售部联系SMC -Sangdest最微电子(NANJING)CO.2-如果需要极高的可靠性(例如在核电控制,航空航天和航空,交通设备,医疗设备和安全设备中使用),则应通过使用具有确保安全性或用户的故障安全预防或其他安排的半导体设备来确保安全性。3-在任何情况下,SMC-最倾斜的微电子(NANJING)Co.,Ltd对根据数据表的操作期间因事故或任何其他原因造成的任何损害均承担责任。SMC-最微电子(NANJING)CO.,LTD对任何知识产权索赔或由于数据表中所述的信息,产品或电路的应用而可能导致的任何其他问题承担任何责任。4-在任何情况下,SMC-最倾斜的微电子(NANJING)Co.,Ltd对半导体设备中的任何故障或在超过绝对最大额定值的值时造成的任何次要损害均承担责任。出口这些产品(技术)时,必须根据相关法规采取必要的程序。5-数据表的任何专利或其他权利均未授予任何第三方或SMC的权利 - 最佳微电子(NANJING)Co.,Ltd。6- 6-数据表(s)不可能在任何形式或部分中以明确的书面形式复制或重复,或者不得以任何形式的零件复制或重复。 Ltd. 7-数据中描述的产品(技术)不得向其申请目的的任何一方提供限制国际和平与安全的任何一方,也不应由其直接购买者或任何第三方应用于该目的。
免责声明:1-本文给出的信息,包括规格和维度,可能会更改,而无需事先通知以改善产品特征。在订购之前,建议购买者与SMC-最新版本的数据表销售部联系SMC -Sangdest最微电子(NANJING)CO.2-如果需要极高的可靠性(例如在核电控制,航空航天和航空,交通设备,医疗设备和安全设备中使用),则应通过使用具有确保安全性或用户的故障安全预防或其他安排的半导体设备来确保安全性。3-在任何情况下,SMC-最倾斜的微电子(NANJING)Co.,Ltd对根据数据表的操作期间因事故或任何其他原因造成的任何损害均承担责任。SMC-最微电子(NANJING)CO.,LTD对任何知识产权索赔或由于数据表中所述的信息,产品或电路的应用而可能导致的任何其他问题承担任何责任。4-在任何情况下,SMC-最倾斜的微电子(NANJING)Co.,Ltd对半导体设备中的任何故障或在超过绝对最大额定值的值时造成的任何次要损害均承担责任。出口这些产品(技术)时,必须根据相关法规采取必要的程序。5-数据表的任何专利或其他权利均未授予任何第三方或SMC的权利 - 最佳微电子(NANJING)Co.,Ltd。6- 6-数据表(s)不可能在任何形式或部分中以明确的书面形式复制或重复,或者不得以任何形式的零件复制或重复。 Ltd. 7-数据中描述的产品(技术)不得向其申请目的的任何一方提供限制国际和平与安全的任何一方,也不应由其直接购买者或任何第三方应用于该目的。
我们证明,飞秒光脉冲的时间对比度是透明介电内部激光写作的关键参数,允许不同的材料修饰。特别是,二氧化硅玻璃中的各向异性纳米孔由10 7飞秒YB的高对比度产生:kgw激光脉冲,而不是低对比度的10 3 yb纤维激光脉冲。差异起源于纤维激光器,该纤维激光器将其三分之一的能量的能量存储在最高200 ps的脉冲后。通过激光诱导的瞬时缺陷吸收脉冲的这种低强度分数,其寿命相对较长,激发能量(例如自捕获的孔)极大地改变了能量沉积的动力学和材料修饰的类型。我们还证明,低对比度脉冲可以有效地创建层状双重结构,该结构可能是由四极杆非线性库驱动的。
目的:评估小儿患者超快脑磁共振成像(MRI)的可行性。材料和方法:我们回顾性地审查了194名0至19岁(中值10.2岁)的儿科患者,他们在2019年5月至2020年8月之间均接受过超快和常规脑MRI。超快MRI序列包括T1和T2加权图像(T1WI和T2WI),流体衰减的反转恢复(FLAIR),T2*加权图像(T2*WI)以及扩散加权侵袭性图像(DWI)。定性图像质量和病变评估是由两位盲人放射学家以5点李克特量表进行的,每种方案对T1WI,T2WI和FLAIR序列的病变计数和大小进行定量评估。Wilcoxon签名的秩检验和类内相关系数(ICC)分析用于比较。结果:超快MRI的等效图像对比度的总扫描时间为1分钟44秒,传统MRI为15分钟30秒。总体而言,超快MRI的图像质量低于常规MRI的平均质量得分,超过序列MRI的平均质量得分范围从2.0到4.8,跨序列的常规MRI的图像得分范围为4.8至5.0(T1WI,T2WI,T2WI,FLAIR,FLAIR,FLAIR和T2*WI的p <0.001 n.01 wi n.018 [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [3]相对于常规MRI,超快MRI的病变检测率如下:T1WI,97.1%; T2WI,99.6%; Flair,92.9%; T2*WI,74.1%;和DWI,100%。超快和常规MRI之间的病变大小测量的ICC(95%置信区间)如下:T1WI,0.998(0.996–0.999); T2WI,0.998(0.997–0.999);和Flair,0.99(0.985–0.994)。结论:超快MRI大大减少了扫描时间,并提供可接受的结果,尽管图像质量略低于常规MRI,以评估儿科患者的颅内异常。关键字:超快磁共振成像;减少扫描时间;图像质量;小儿大脑成像;回声平面成像
Park Seismic 提供的服务 Park Seismic 提供灵活、快捷的风力涡轮机场地地震调查完整现场调查和报告服务,范围从最基本的 1-D 分析到完整的 3-D 分析,具体取决于场地条件和预算情况。现场调查可由单独的当地工程公司根据 Park Seismic 提供的说明进行,然后由 Park Seismic 进行后续数据处理、解释和报告。与单站点调查相比,多站点调查可以以更快、更经济的方式进行。有关更多信息,请联系 Choon B. Park 博士(choon@parkseismic.com,电话:347-860-1223),或访问 http://www.parkseismic.com/WindTurbine.html。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。
有效运输,转换和储存热能在促进脱碳和减轻全球变暖方面起着不可分割的作用。[1]已针对纳米级[2]的热运输进行了重大努力,该应用是由热电学收获,[3]微电子中的热量管理等应用所驱动的,[4]高效率热储存系统,[5] [5]和结构材料的被动冷却。[6]但是,我们对声子热传输的理解在很大程度上受到了无法获得频率分辨的声子传输的实验工具的阻碍。可测量的电导率κ和界面热电导G是最重要的两个可测量的两个,但提供了有限的微型信息。另一方面,频率分辨的松弛时间τ(ω)和
药物-靶标相互作用 (DTI) 预测是药物再利用领域中一项相关但具有挑战性的任务。计算机模拟方法引起了特别的关注,因为它们可以降低传统方法的相关成本和时间投入。然而,当前最先进的方法存在几个局限性:现有的 DTI 预测方法在计算上成本高昂,从而阻碍了使用大型网络和利用可用数据集的能力,并且 DTI 预测方法对未见数据集的推广仍未探索,这可能会在准确性和稳健性方面改善 DTI 推断方法的开发过程。在这项工作中,我们介绍了 GE NN IUS(图嵌入神经网络相互作用发现系统),这是一种基于图神经网络 (GNN) 的方法,在各种数据集的准确性和时间效率方面均优于最先进的模型。我们还通过评估每个数据集中以前未知的 DTI 展示了其发现新相互作用的预测能力。我们通过在不同数据集上训练和测试 GE NN IUS 进一步评估了其泛化能力,结果表明该框架可以通过在大型数据集上训练并在较小的数据集上测试来潜在地改进 DTI 预测任务。最后,我们定性地研究了 GE NN IUS 生成的嵌入,发现 GNN 编码器在图卷积之后保留了生物信息,同时通过节点传播这些信息,最终在节点嵌入空间中区分蛋白质家族。
蛋白质中的电荷转移反应对生命很重要,例如修复DNA的光溶酶中,但结构动力学的作用尚不清楚。在这里,使用飞秒X射线晶体学,我们报告了电子沿着果蝇(6-4)光解酶中电子四个保守的色氨酸链传递时发生的结构变化。在Femto和Picsecond延迟时,第一个色氨酸对黄素的光摄影导致在关键的天冬酰胺,保守的盐桥和附近水分子的重新安排上引起定向的结构反应。我们检测到电荷诱导的结构变化,接近第二个色氨酸到20 ps的第二个接近的结构变化,将附近的蛋氨酸鉴定为氧化还原链中的活跃参与者,从第四次色氨酸附近的20 ps鉴定。光解酶经历了其结构的高度定向和仔细的定时适应。这质疑马库斯理论中线性溶剂响应近似的有效性,并表明进化已经优化了快速蛋白波动以进行最佳电荷转移。