是在神经形态计算中应用的有前途的候选者,6 - 8以及宏伟的和自旋装置。9 - 11这些系统的质量和多功能性已经为探索新兴物理学1,3并扩大其潜在应用开辟了途径。但是,由纳米图案过程产生的这些磁性纳米阵列的地形可能会带来重大挑战。一个示例是观察到的与结构相关的强相关光子散射,该散射可能会掩盖阵列中的磁顺序引起的散射。12鉴于这些系统的光子散射特性可能在信息技术应用中发挥关键作用,13或X射线跨曲面中用于操纵光子角和轨道动量的X射线跨面,12探索在开发真正的平面阵列的方法至关重要的是在材料选择和精确的空间控制方面保持灵活性。研究此类处理的另一种动机源于最近的进步,表明磁性超材料作为计算物理底物具有巨大的潜力。8,14将这些材料与CMOS技术或磁随机记忆(MRAM)架构集成的可能性突出了扩展可用制造方法的需求。15
机械超材料的独特机械性能源于其结构设计而不是物质成分,它在工程应用中广受欢迎。尤其是,与增材制造(AM)相比,自组装技术的最新进展为具有无与伦比的特征尺寸控制和可伸缩性提供了具有无与伦比的特征尺寸控制和可伸缩性的材料的潜力。然而,该领域仍处于早期阶段。从这个角度来看,我们首先概述了最先进的自组装技术,重点是共聚物和胶体晶体自组装过程。然后,我们讨论该研究领域的当前挑战和未来机会,重点介绍了新颖的制造方法,对高通量表征方法的需求以及机器学习(ML)(ML)和实验室自动化的整合。鉴于在所有这些领域的最新进展,我们预见了由自组装技术制造的机械超材料,这些技术会影响各种应用,这些应用依赖于轻巧,坚固和坚固的材料。[doi:10.1115/1.4064144]
摘要:由聚(3,3-双(3,3-双基)(四甲基甲基)用四氢呋喃)制成的热固性聚氨酯弹性体和各种多功能异氰酸酯交联,以发现一种调节机械性能的新机制。额外的氢键基序(例如氨基甲酸酯或尿素)是在交叉链接机中构建的,被证明可以从本质上确定弹性体的刚度和韧性,而两个网络的共价交联密度严格控制在同一水平上。由傅立叶转换红外光谱(FTIR),动力学机械分析(DMA)和低场核磁共振(LFNMR)(lfnmr)(lfnmr)的证据(ftir)(ftir)(lfnmr),毫不犹豫地强调和支持聚氨酯热固件的机械性能的影响和支持。■简介聚氨酯弹性体是一种重要的粘弹性材料,在一定温度范围和较大的可逆变形性下具有相对较低的弹性模量。1,2
选择有潜力应用于未来装甲的材料作为先进材料 ・陶瓷材料 与传统的无压烧结和热压方法相比,静态材料特性如弯曲强度、硬度等。关注脉冲电流压力(放电等离子体)烧结法,提高了静电性能! ・有色金属材料 密度约为黑色金属材料的1/5,比传统材料强度更高 高强度镁合金 低杨氏模量和高强度钛合金 钛合金
添加材料并通过细化组成晶粒来提高强度(图1中Ⅰ)。理想的最终目标材料是纳米多晶体,其中纳米级金刚石或立方氮化硼晶粒直接紧密地结合在一起,而不包含任何粘合剂材料(图1中Ⅱ)。最终材料可以形成与单晶金刚石相似的高精度切削刃。此外,这种材料的不可解理性使切削刃的强度超过了单晶的强度。由于这些优异的特性,该材料在精密和微加工应用中很有前途。然而,这种创新的纳米晶材料不能仅仅通过扩展传统技术来创造。相反,开发创新的新工艺(产品创新)至关重要。我们开始研究和开发纳米多晶金刚石和纳米多晶立方氮化硼,旨在创造适用于更高速、更高效和更高精度切削应用的终极切削刀具材料。我们经过多年的努力,通过建立超高压新技术和直接转化烧结工艺,成功研制出这些新型超硬材料。本文详细介绍了这些新型超硬材料的开发、特性和应用。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。